1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
// Reference rust implementation of AluVM (arithmetic logic unit virtual machine).
// To find more on AluVM please check <https://github.com/internet2-org/aluvm-spec>
//
// Designed & written in 2021 by
//     Dr. Maxim Orlovsky <orlovsky@pandoracore.com>
// This work is donated to LNP/BP Standards Association by Pandora Core AG
//
// This software is licensed under the terms of MIT License.
// You should have received a copy of the MIT License along with this software.
// If not, see <https://opensource.org/licenses/MIT>.

use alloc::boxed::Box;

use amplify::num::u6;

use super::{
    DeleteFlag, FloatEqFlag, InsertFlag, InstructionSet, IntFlags, MergeFlag, RoundingFlag,
    SignFlag, SplitFlag,
};
use crate::data::{ByteStr, MaybeNumber, Step};
use crate::libs::LibSite;
use crate::reg::{Reg16, Reg32, Reg8, RegA, RegA2, RegAF, RegAR, RegBlockAR, RegF, RegR};

/// Reserved instruction, which equal to [`ControlFlowOp::Fail`].
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display, Default)]
#[display("rsrv:{0:02X}")]
pub struct ReservedOp(/** Reserved instruction op code value */ pub(super) u8);

/// Full set of instructions
#[derive(Clone, PartialEq, Eq, Hash, Debug, Display)]
#[display(inner)]
#[non_exhaustive]
pub enum Instr<Extension = ReservedOp>
where
    Extension: InstructionSet,
{
    /// Control-flow instructions. See [`ControlFlowOp`] for the details.
    // 0b00_000_***
    ControlFlow(ControlFlowOp),

    /// Instructions setting register values. See [`PutOp`] for the details.
    // 0b00_001_***
    Put(PutOp),

    /// Instructions moving and swapping register values. See [`PutOp`] for the details.
    // 0b00_010_***
    Move(MoveOp),

    /// Instructions comparing register values. See [`CmpOp`] for the details.
    // 0b00_011_***
    Cmp(CmpOp),

    /// Arithmetic instructions. See [`ArithmeticOp`] for the details.
    // 0b00_100_***
    Arithmetic(ArithmeticOp),

    /// Bit operations & boolean algebra instructions. See [`BitwiseOp`] for the details.
    // 0b00_101_***
    Bitwise(BitwiseOp),

    /// Operations on byte strings. See [`BytesOp`] for the details.
    // 0b00_110_***
    Bytes(BytesOp),

    /// Cryptographic hashing functions. See [`DigestOp`] for the details.
    // 0b01_000_***
    Digest(DigestOp),

    #[cfg(feature = "secp256k1")]
    /// Operations on Secp256k1 elliptic curve. See [`Secp256k1Op`] for the details.
    // 0b01_001_0**
    Secp256k1(Secp256k1Op),

    #[cfg(feature = "curve25519")]
    /// Operations on Curve25519 elliptic curve. See [`Curve25519Op`] for the details.
    // 0b01_001_1**
    Curve25519(Curve25519Op),

    /// Extension operations which can be provided by a host environment provided via generic
    /// parameter
    // 0b10_***_***
    ExtensionCodes(Extension),

    /// Reserved instruction for fututre use in core `ALU` ISA.
    ///
    /// Currently equal to [`ControlFlowOp::Fail`].
    ReservedInstruction(ReservedOp),

    // Reserved operations for the future use.
    //
    // When such an opcode is met in the bytecode the decoder MUST fail.
    // 0x11_***_***
    /// No-operation instruction.
    // #[value = 0b11_111_111]
    Nop,
}

/// Control-flow instructions
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum ControlFlowOp {
    /// Completes program execution writing `false` to `st0` (indicating program failure). Does not
    /// modify value of call stack registers.
    #[display("fail")]
    Fail,

    /// Completes program execution writing `true` to `st0` (indicating program success). Does not
    /// modify value of call stack registers.
    #[display("succ")]
    Succ,

    /// Unconditionally jumps to an offset. Increments `cy0`.
    #[display("jmp     {0:#06X}")]
    Jmp(u16),

    /// Jumps to an offset if `st0` == true, otherwise does nothing. Increments `cy0`.
    #[display("jif     {0:#06X}")]
    Jif(u16),

    /// Jumps to other location in the current code with ability to return back (calls a
    /// subroutine). Increments `cy0` and pushes offset of the instruction which follows current
    /// one to `cs0`.
    #[display("routine {0:#06X}")]
    Routine(u16),

    /// Calls code from an external library identified by the hash of its code. Increments `cy0`
    /// and `cp0` and pushes offset of the instruction which follows current one to `cs0`.
    #[display("call    {0}")]
    Call(LibSite),

    /// Passes execution to other library without an option to return. Does not increment `cy0` and
    /// `cp0` counters and does not add anything to the call stack `cs0`.
    #[display("exec    {0}")]
    Exec(LibSite),

    /// Returns execution flow to the previous location from the top of `cs0`. Does not change the
    /// value in `cy0`. Decrements `cp0`.
    #[display("ret")]
    Ret,
}

/// Instructions setting register values
#[derive(Clone, PartialEq, Eq, Hash, Debug, Display)]
pub enum PutOp {
    /// Cleans a value of `A` register (sets it to undefined state)
    #[display("clr     {0}{1}")]
    ClrA(RegA, Reg32),

    /// Cleans a value of `F` register (sets it to undefined state)
    #[display("clr     {0}{1}")]
    ClrF(RegF, Reg32),

    /// Cleans a value of `R` register (sets it to undefined state)
    #[display("clr     {0}{1}")]
    ClrR(RegR, Reg32),

    /// Unconditionally assigns a value to `A` register.
    ///
    /// NB: Bytecode does not contain the value (it is contained in the data segment), thus when
    ///     this instruction is assembled and the data are not present in the data segment (their
    ///     offset + length exceeds data segment size) the operation will set destination register
    ///     into undefined state and `st0` to `false`. Otherwise, `st0` value is not affected.
    #[display("put     {2},{0}{1}")]
    PutA(RegA, Reg32, Box<MaybeNumber>),

    /// Unconditionally assigns a value to `F` register
    ///
    /// NB: Bytecode does not contain the value (it is contained in the data segment), thus when
    ///     this instruction is assembled and the data are not present in the data segment (their
    ///     offset + length exceeds data segment size) the operation will set destination register
    ///     into undefined state and `st0` to `false`. Otherwise, `st0` value is not affected.
    #[display("put     {2},{0}{1}")]
    PutF(RegF, Reg32, Box<MaybeNumber>),

    /// Unconditionally assigns a value to `R` register
    ///
    /// NB: Bytecode does not contain the value (it is contained in the data segment), thus when
    ///     this instruction is assembled and the data are not present in the data segment (their
    ///     offset + length exceeds data segment size) the operation will set destination register
    ///     into undefined state and `st0` to `false`. Otherwise, `st0` value is not affected.
    #[display("put     {2},{0}{1}")]
    PutR(RegR, Reg32, Box<MaybeNumber>),

    /// Conditionally assigns a value to `A` register if the register is in uninitialized state.
    /// If the register is initialized, sets `st0` to `false`.
    ///
    /// NB: Bytecode does not contain the value (it is contained in the data segment), thus when
    ///     this instruction is assembled and the data are not present in the data segment (their
    ///     offset + length exceeds data segment size) _and_ the destination register is
    ///     initialized, the operation will set destination register into undefined state and `st0`
    ///     to `false`. Otherwise, `st0` value is changed according to the general operation rules.
    #[display("putif   {2},{0}{1}")]
    PutIfA(RegA, Reg32, Box<MaybeNumber>),

    /// Conditionally assigns a value to `R` register if the register is in uninitialized state.
    /// If the register is initialized, sets `st0` to `false`.
    ///
    /// NB: Bytecode does not contain the value (it is contained in the data segment), thus when
    ///     this instruction is assembled and the data are not present in the data segment (their
    ///     offset + length exceeds data segment size) _and_ the destination register is
    ///     initialized, the operation will set destination register into undefined state and `st0`
    ///     to `false`. Otherwise, `st0` value is changed according to the general operation rules.
    #[display("putif   {2},{0}{1}")]
    PutIfR(RegR, Reg32, Box<MaybeNumber>),
}

/// Instructions moving and swapping register values
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum MoveOp {
    /// Move operation: moves value of one of the integer arithmetic registers into another integer
    /// arithmetic register of the same bit size, clearing its previous value and setting the
    /// source to `None`.
    #[display("mov     {0}{1},{0}{2}")]
    MovA(RegA, Reg32, Reg32),

    /// Duplicate operation: duplicates value of one of the integer arithmetic registers into
    /// another integer arithmetic register of the same bit size, clearing its previous value.
    #[display("dup     {0}{1},{0}{2}")]
    DupA(RegA, Reg32, Reg32),

    /// Swap operation: swaps value of two integer arithmetic registers of the same bit size.
    #[display("swp     {0}{1},{0}{2}")]
    SwpA(RegA, Reg32, Reg32),

    /// Move operation: moves value of one of the float arithmetic registers into another float
    /// arithmetic register of the same bit size, clearing its previous value and setting the
    /// source to `None`.
    #[display("mov     {0}{1},{0}{2}")]
    MovF(RegF, Reg32, Reg32),

    /// Duplicate operation: duplicates value of one of the float arithmetic registers into
    /// another float arithmetic register of the same bit size, clearing its previous value.
    #[display("dup     {0}{1},{0}{2}")]
    DupF(RegF, Reg32, Reg32),

    /// Swap operation: swaps value of two float arithmetic registers of the same bit size.
    #[display("swp     {0}{1},{0}{2}")]
    SwpF(RegF, Reg32, Reg32),

    /// Move operation: moves value of one of the general non-arithmetic registers into another
    /// general non- arithmetic register of the same bit size, clearing its previous value and
    /// setting the source to `None`.
    #[display("mov     {0}{1},{0}{2}")]
    MovR(RegR, Reg32, Reg32),

    /// Duplicate operation: duplicates value of one of the general non-arithmetic registers into
    /// another general non-arithmetic register of the same bit size, clearing its previous value.
    #[display("dup     {0}{1},{0}{2}")]
    DupR(RegR, Reg32, Reg32),

    // ----
    /// Copy operation: copies value from one of the integer arithmetic registers to a destination
    /// register treating value as unsigned: if the value does not fit destination bit dimension,
    /// truncates the most significant bits until they fit, setting `st0` value to `false`.
    /// Otherwise, the operation sets `st0` to `true`.
    #[display("cpy     {0}{1},{2}{3}")]
    CpyA(RegA, Reg32, RegA, Reg32),

    /// Conversion operation: copies value from one of the integer arithmetic registers to a
    /// destination register treating value as signed: if the value does not fit destination bit
    /// dimension, truncates the most significant non-sign bits until they fit, setting `st0`
    /// value to `false`. Otherwise, fills the difference between source and destination bit length
    /// with the value taken from the most significant source bit (sign bit) and sets `st0` to
    /// `true`.
    #[display("cnv     {0}{1},{2}{3}")]
    CnvA(RegA, Reg32, RegA, Reg32),

    /// Conversion operation: converts value from one of the float arithmetic registers to a
    /// destination register according to floating encoding rules. If the value does not fit
    /// destination bit dimension, truncates the most significant non-sign bits until they fit,
    /// setting `st0` value to `false`. Otherwise sets `st0` to `true`.
    #[display("cnv     {0}{1},{2}{3}")]
    CnvF(RegF, Reg32, RegF, Reg32),

    /// Copy operation: copies value from one of the general non-arithmetic registers to a
    /// destination register. If the value does not fit destination bit dimension,
    /// truncates the most significant bits until they fit, setting `st0` value to `false`.
    /// Otherwise, extends most significant bits with zeros and sets `st0` to `true`.
    #[display("cpy     {0}{1},{2}{3}")]
    CpyR(RegR, Reg32, RegR, Reg32),

    /// Swap-copy operation: swaps value one of the integer arithmetic registers with a value of an
    /// general non-arithmetic register. If any of the values do not fit destination bit
    /// dimensions, truncates the most significant bits until they fit, setting `st0` value to
    /// `false`. Otherwise, extends most significant bits with zeros and sets `st0` to `true`.
    #[display("spy     {0}{1},{2}{3}")]
    SpyAR(RegA, Reg32, RegR, Reg32),

    /// Conversion operation: converts value of an integer arithmetic register to a float register
    /// according to floating encoding rules. If the value does not fit destination bit dimension,
    /// truncates the most significant non-sign bits until they fit, setting `st0` value to
    /// `false`. Otherwise sets `st0` to `true`.
    ///
    /// NB: operation always treats integers as signed integers.
    #[display("cnv     {0}{1},{2}{3}")]
    CnvAF(RegA, Reg32, RegF, Reg32),

    /// Conversion operation: converts value of a float arithmetic register to an integer register
    /// according to floating encoding rules. If the value does not fit destination bit dimension,
    /// truncates the most significant non-sign bits until they fit, setting `st0` value to
    /// `false`. Otherwise sets `st0` to `true`.
    ///
    /// NB: operation always treats integers as signed integers.
    #[display("cnv     {0}{1},{2}{3}")]
    CnvFA(RegF, Reg32, RegA, Reg32),
}

/// Instructions comparing register values
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum CmpOp {
    /// Compares value of two integer arithmetic registers setting `st0` to `true` if the first
    /// parameter is greater (and not equal) than the second one. If at least one of the registers
    /// is set to `None`, sets `st0` to `false`.
    #[display("gt:{0}    {1}{2},{1}{3}")]
    GtA(SignFlag, RegA, Reg32, Reg32),

    /// Compares value of two integer arithmetic registers setting `st0` to `true` if the first
    /// parameter is lesser (and not equal) than the second one. If at least one of the registers
    /// is set to `None`, sets `st0` to `false`.
    #[display("lt:{0}    {1}{2},{1}{3}")]
    LtA(SignFlag, RegA, Reg32, Reg32),

    /// Compares value of two float arithmetic registers setting `st0` to `true` if the first
    /// parameter is greater (and not equal) than the second one. If at least one of the registers
    /// is set to `None`, sets `st0` to `false`.
    #[display("gt:{0}    {1}{2},{1}{3}")]
    GtF(FloatEqFlag, RegF, Reg32, Reg32),

    /// Compares value of two float arithmetic registers setting `st0` to `true` if the first
    /// parameter is lesser (and not equal) than the second one. If at least one of the registers
    /// is set to `None`, sets `st0` to `false`.
    #[display("lt:{0}    {1}{2},{1}{3}")]
    LtF(FloatEqFlag, RegF, Reg32, Reg32),

    // ----
    /// Compares value of two general non-arithmetic registers setting `st0` to `true` if the first
    /// parameter is greater (and not equal) than the second one. If at least one of the registers
    /// is set to `None`, sets `st0` to `false`.
    #[display("gt      {0}{1},{0}{2}")]
    GtR(RegR, Reg32, Reg32),

    /// Compares value of two general non-arithmetic registers setting `st0` to `true` if the first
    /// parameter is lesser (and not equal) than the second one. If at least one of the registers
    /// is set to `None`, sets `st0` to `false`.
    #[display("lt      {0}{1},{0}{2}")]
    LtR(RegR, Reg32, Reg32),

    /// Checks equality of value in two integer arithmetic (`A`) registers putting result into
    /// `st0`.None-equality flag specifies value for `st0` for the cases when both of the registers
    /// are in `None` state.
    #[display("eq      {1}{2},{1}{3} .none={0}")]
    EqA(/** `st0` value if both of the registers are uninitialized */ bool, RegA, Reg32, Reg32),

    /// Checks equality of value in two float arithmetic (`F`) registers putting result into `st0`.
    /// If both registers are `None`, the `st0` is set to `false`.
    #[display("eq:{0}    {1}{2},{1}{3}")]
    EqF(FloatEqFlag, RegF, Reg32, Reg32),

    /// Checks equality of value in two non-arithmetic (`R`) registers putting result into `st0`.
    /// None-equality flag specifies value for `st0` for the cases when both of the registers
    /// are in `None` state.
    #[display("eq      {1}{2},{1}{3} .none={0}")]
    EqR(/** `st0` value if both of the registers are uninitialized */ bool, RegR, Reg32, Reg32),

    // ---
    /// Checks if the value in `A` register is equal to zero, setting `st0` to `true` in this case.
    /// Otherwise, sets `st0` to false (including when the register is in the undefined state).
    #[display("ifz     {0}{1}")]
    IfZA(RegA, Reg32),

    /// Checks if the value in `R` register is equal to zero, setting `st0` to `true` in this case.
    /// Otherwise, sets `st0` to false (including when the register is in the undefined state).
    #[display("ifz     {0}{1}")]
    IfZR(RegR, Reg32),

    /// Checks if the value in `A` register is in an undefined state, setting `st0` to `true` in
    /// this case. Otherwise, sets `st0` to false.
    #[display("ifn     {0}{1}")]
    IfNA(RegA, Reg32),

    /// Checks if the value in `R` register is in an undefined state, setting `st0` to `true` in
    /// this case. Otherwise, sets `st0` to false.
    #[display("ifn     {0}{1}")]
    IfNR(RegR, Reg32),

    /// Takes value from `st0` and merges into the value of the destination `A` register. The merge
    /// operation is defined by the [`MergeFlag`] argument.
    #[display("st:{0}    {1}{2}")]
    St(MergeFlag, RegA, Reg8),

    /// Inverses value in `st0` register
    #[display("inv     st0")]
    StInv,
}

/// Arithmetic instructions.
///
/// All operations modify the value of `st0` register, setting it to `false` if the destination
/// is set to `None`. Otherwise, `st0` value is `true`, even if the overflow has occurred (when
/// `wrap` flag is provided).
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Display)]
pub enum ArithmeticOp {
    /// Adds values from two integer arithmetic registers and puts result into destination.
    #[display("add:{0}  {1}{2},{1}{3}")]
    AddA(IntFlags, RegA, Reg32, Reg32),

    /// Adds values from two float arithmetic registers and puts result into destination.
    #[display("add:{0}   {1}{2},{1}{3}")]
    AddF(RoundingFlag, RegF, Reg32, Reg32),

    /// Subtracts values from two integer arithmetic registers and puts result into destination.
    #[display("sub:{0}  {1}{2},{1}{3}")]
    SubA(IntFlags, RegA, Reg32, Reg32),

    /// Subtracts values from two float arithmetic registers and puts result into destination.
    #[display("sub:{0}   {1}{2},{1}{3}")]
    SubF(RoundingFlag, RegF, Reg32, Reg32),

    /// Multiplies values from two integer arithmetic registers and puts result into destination.
    #[display("mul:{0}  {1}{2},{1}{3}")]
    MulA(IntFlags, RegA, Reg32, Reg32),

    /// Multiplies values from two float arithmetic registers and puts result into destination.
    #[display("mul:{0}   {1}{2},{1}{3}")]
    MulF(RoundingFlag, RegF, Reg32, Reg32),

    /// Divides values from two integer arithmetic registers and puts result into destination.
    ///
    /// Since the division operation may not result in overflow, the overflow flag is used to
    /// indicate rounding of the result:
    ///
    /// Overflow flag is also defines behaviour for zero division `(x/0 if x > 0)`: whether the
    /// destination must be set to `0` (true) or to None (false).
    ///
    /// NB: Impossible arithmetic operation 0/0 always sets destination to `None`.
    #[display("div:{0}  {1}{2},{1}{3}")]
    DivA(IntFlags, RegA, Reg32, Reg32),

    /// Divides values from two float arithmetic registers and puts result into destination.
    #[display("div:{0}   {1}{2},{1}{3}")]
    DivF(RoundingFlag, RegF, Reg32, Reg32),

    /// Modulo division.
    ///
    /// Puts a reminder of the division of source register on destination register into the
    /// destination.
    #[display("rem     {0}{1},{2}{3}")]
    Rem(RegA, Reg32, RegA, Reg32),

    /// Increment/decrement register value on a given signed step.
    ///
    /// Sets the destination to `None` and `st0` to `false` in case of overflow.
    #[display("{2:#}     {2}{0}{1}")]
    Stp(RegA, Reg32, Step),

    /// Negates most significant bit
    #[display("neg     {0}{1}")]
    Neg(RegAF, Reg16),

    /// Replaces the register value with its absolute value
    #[display("abs     {0}{1}")]
    Abs(RegAF, Reg16),
}

/// Bit operations & boolean algebra instructions
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum BitwiseOp {
    /// Bitwise AND operation
    #[display("and     {0}{1},{0}{2},{0}{3}")]
    And(RegAR, /** Source 1 */ Reg16, /** Source 2 */ Reg16, /** Operation destination */ Reg16),

    /// Bitwise OR operation
    #[display("or      {0}{1},{0}{2},{0}{3}")]
    Or(RegAR, /** Source 1 */ Reg16, /** Source 2 */ Reg16, /** Operation destination */ Reg16),

    /// Bitwise XOR operation
    #[display("xor     {0}{1},{0}{2},{0}{3}")]
    Xor(RegAR, /** Source 1 */ Reg16, /** Source 2 */ Reg16, /** Operation destination */ Reg16),

    /// Bitwise inversion
    #[display("not     {0}{1}")]
    Not(RegAR, Reg16),

    /// Left bit shift, filling added bits values with zeros. Sets `st0` value to the value of the
    /// most significant bit before the operation.
    ///
    /// This, [`BitwiseOp::ShrA`] and [`BitwiseOp::ShrR`] operations are encoded with the same
    /// instruction bitcode and differ only in their first two argument bits.
    #[display("shl     {0}{1},{2}{3}")]
    Shl(
        /** Which of `A` registers will have a shift value */ RegA2,
        /** Index of `u8` or `u16` register with bitshift value */ Reg32,
        /** Register to shift the value in */ RegAR,
        /** Source & destination register */ Reg32,
    ),

    /// Right bit shift for one of the integer arithmetic registers, filling added bits values with
    /// zeros (if `sign` flag is set to `false`) or ones (if `sign` flag is set to `true`).
    /// Sets `st0` value to the value of the least significant bit before the operation.
    ///
    /// This, [`BitwiseOp::Shl`] and [`BitwiseOp::ShrR`] operations are encoded with the same
    /// instruction bitcode and differ only in their first two argument bits.
    #[display("shr:{0}   {1}{2},{3}{4}")]
    ShrA(
        /** Sign flag */ SignFlag,
        /** Which of `A` registers will have a shift value */ RegA2,
        /** Index of `u8` or `u16` register with bitshift value */ Reg16,
        /** Family of `A` registers to shift */ RegA,
        /** Source & destination `A` register */ Reg32,
    ),

    /// Right bit shift for one of the general non-arithmetic registers, filling added bits values
    /// with zeros (if `sign` flag is set to `false`) or ones (if `sign` flag is set to `true`).
    /// Sets `st0` value to the value of the least significant bit before the operation.
    ///
    /// This, [`BitwiseOp::Shl`] and [`BitwiseOp::ShrA`] operations are encoded with the same
    /// instruction bitcode and differ only in their first two argument bits.
    #[display("shr     {0}{1},{2}{3}")]
    ShrR(
        /** Which of `A` registers will have a shift value */ RegA2,
        /** Index of `u8` or `u16` register with bitshift value */ Reg32,
        /** Family of `R` registers to shift */ RegR,
        /** Source & destination `R` register */ Reg32,
    ),

    /// Left bit shift, cycling the shifted values (most significant bit becomes least
    /// significant), putting the result into the first source register. Does not modify `st0`
    /// value.
    ///
    /// This and the next [`BitwiseOp::Scr`] operation are encoded with the same instruction
    /// bitcode and differ only in their first argument bit.
    #[display("scl     {0}{1},{2}{3}")]
    Scl(
        /** Which of `A` registers will have a shift value */ RegA2,
        /** Index of `u8` or `u16` register with bitshift value */ Reg32,
        /** Register to shift the value in */ RegAR,
        /** Source & destination register */ Reg32,
    ),

    /// Right bit shift, cycling the shifted values (least significant bit becomes nost
    /// significant), putting the result into the first source register. Does not modify `st0`
    /// value.
    ///
    /// This and the previous [`BitwiseOp::Scl`] operation are encoded with the same instruction
    /// bitcode and differ only in their first argument bit.
    #[display("scr     {0}{1},{2}{3}")]
    Scr(
        /** Which of `A` registers will have a shift value */ RegA2,
        /** Index of `u8` or `u16` register with bitshift value */ Reg32,
        /** Register to shift the value in */ RegAR,
        /** Source & destination register */ Reg32,
    ),

    /// Reverses bit order in the integer arithmetic register. Does not modify `st0` value.
    #[display("rev     {0}{1}")]
    RevA(RegA, Reg32),

    /// Reverses bit order in the generic non-arithmetic register. Does not modify `st0` value.
    #[display("rev     {0}{1}")]
    RevR(RegR, Reg32),
}

/// Operations on byte strings.
///
/// All of these operations either set `st0` to `false`, if an exception occurred during their
/// execution, or do not modify `st0` register value. Since each of the exceptions can be predicted
/// with a code run by VM beforehand (unlike for arithmetic exceptions), the absence of `st0` value
/// change upon success allows batching multiple string operations and checking their final result,
/// while still maintaining ability to predict/detect which of the operations has failed.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum BytesOp {
    /// Put bytestring into a byte string register
    ///
    /// Data are kept in the separate data segment, thus when the instruction is pared from the
    /// code segment it knows only data offset and length. If this offset or length exceeds the
    /// size of the data segment, the instruction truncates the string to the part that is present
    /// in the data segment (or zero-length string if the offset exceeds data segment length) and
    /// sets `st0` to `false`. Otherwise, `st0` is unaffected.
    #[display("put     s16[{0}],{1}")]
    Put(
        /** Destination `s` register index */ u8,
        Box<ByteStr>,
        /** Indicates that the operation must set `st0` to false; i.e. string data are not
         * complete */
        bool,
    ),

    /// Move bytestring value between registers
    #[display("mov     s16[{0}],s16[{1}]")]
    Mov(/** Source `s` register index */ u8, /** Destination `s` register index */ u8),

    /// Swap bytestring value between registers
    #[display("swp     s16[{0}],s16[{1}]")]
    Swp(/** First `s` register index */ u8, /** Second `s` register index */ u8),

    /// Fill segment of bytestring with specific byte value, setting the length of the string in
    /// the destination register to specific value.
    ///
    /// The start offset is the least offset from one of the `a16` register provided in `offset`
    /// arguments, the end offset is the greatest one. If any of the offsets exceeds the length of
    /// the string in the destination register, operation behaviour is defined by the provided
    /// boolean flag:
    /// - if the flag is `true`, the string length is extended to the largest of the offsets and
    ///   all bytes between previous string length and start offset are filled with zeros, setting
    ///   `st0` value to `false`;
    /// - if the flag is `false`, the destination register is set to `None` and `st0` is set to
    ///   `false`.
    ///
    /// If both of the offsets lie within the length of the string, the `st0` register value is not
    /// modified.
    ///
    /// If any of the offsets or value registers are unset, sets `st0` to `false` and does not
    /// change destination value.
    #[display("fill    s16[{0}],{1}..{2},{3}")]
    Fill(
        /** `s` register index */ u8,
        /** `a16` register holding first offset */ Reg32,
        /** `a16` register holding second offset (inclusive) */ Reg32,
        /** `a8` register index holding the value */ Reg32,
        /** Exception handling flag */ bool,
    ),

    /// Put length of the string into the destination register.
    ///
    /// If the string register is empty, or destination register can't fit the length, sets `st0`
    /// to `false` and destination register to `None`.
    #[display("len     s16[{0}],a16[0]")]
    Len(/** `s` register index */ u8, RegA, Reg32),

    /// Count number of byte occurrences from the `a8` register within the string and stores that
    /// value into destination `a16` register.
    ///
    /// If the string register is empty, or destination register can't fit the length, sets `st0`
    /// to `false` and destination register to `None`.
    ///
    /// If the source byte value register is uninitialized, sets destination register to `None` and
    /// `st0` to `false`.
    #[display("cnt     s16[{0}],{1},a16[0]")]
    Cnt(
        /** `s` register index */ u8,
        /** `a8` register with the byte value */ Reg16,
        /** `a16` destination register index */ Reg16,
    ),

    /// Check equality of two strings, putting result into `st0`.
    ///
    /// If both of strings are uninitialized, `st0` assigned `true` value.
    #[display("cmp     s16[{0}],s16[{0}]")]
    Eq(u8, u8),

    /// Compute offset and length of the `n`th fragment shared between two strings ("conjoint
    /// fragment"), putting it to the destination `u16` registers. If strings have no conjoint
    /// fragment sets destination to `None`.
    #[display("con     s16[{0}],s16[{1}],u16{2},u16{3}")]
    Con(
        /** First source string register */ u8,
        /** Second source string register */ u8,
        /** Number of the conjoint fragment to match */ u6,
        /** `u16` register index to save the offset of the conjoint fragment */ Reg32,
        /** `u16` register index to save the length of the conjoint fragment */ Reg32,
    ),

    /// Count number of occurrences of one string within another putting result to `a16[1]`,
    ///
    /// If the first or the second string is `None`, sets `st0` to `false` and `a16[1]` to `None`.
    ///
    /// If the number of occurrences is `u16::MAX + 1`, sets `a16[1]` to `u16::MAX` and `st0` to
    /// `false`.
    #[display("find    s16[{0}],s16[{1}],a16[1]")]
    Find(/** `s` register with string */ u8, /** `s` register with matching fragment */ u8),

    /// Extract byte string slice into general `r` register. The length of the extracted string is
    /// equal to the bit dimension of the destination register. If the bit size of the destination
    /// plus the initial offset exceeds string length the rest of the destination register bits is
    /// filled with zeros and `st0` is set to `false`. Otherwise, `st0` value is not modified.
    ///
    /// If the source string register - or offset register is uninitialized, sets destination to
    /// uninitialized state and `st0` to `false`.
    #[display("extr    s16{0},a16{1},{2}{3}")]
    Extr(/** `s` register index */ Reg32, RegR, Reg16, /** `a16` register with offset */ Reg16),

    /// Inject general `R` register value at a given position to string register, replacing value
    /// of the corresponding bytes. If the insert offset is larger than the current length of the
    /// string, the length is extended and all bytes inbetween previous length and the new length
    /// are initialized with zeros. If the length of the inserted string plus insert offset exceeds
    /// the maximum string register length (2^16 bytes), than the destination register is set to
    /// `None` state and `st0` is set to `false`. Otherwise, `st0` value is not modified.
    #[display("inj     s16{0},a16{1},{2}{3}")]
    Inj(
        /** `s` register index acting as the source and destination */ Reg32,
        RegR,
        Reg16,
        /** `a16` register with offset */ Reg16,
    ),

    /// Join bytestrings from two registers into destination, overwriting its value. If the length
    /// of the joined string exceeds the maximum string register length (2^16 bytes), than the
    /// destination register is set to `None` state and `st0` is set to `false`. Otherwise,
    /// `st0` value is not modified.
    #[display("join    s16[{0}],s16[{1}],s16[{2}]")]
    Join(/** Source 1 */ u8, /** Source 2 */ u8, /** Destination */ u8),

    /// Split bytestring at a given offset taken from `a16` register into two destination strings,
    /// overwriting their value. If offset exceeds the length of the string in the register,
    /// than the behaviour is determined by the [`SplitFlag`] value.
    ///
    /// <pre>
    /// +--------------------
    /// |       | ....
    /// +--------------------
    ///         ^       ^
    ///         |       +-- Split offset (`offset`)
    ///         +-- Source string length (`src_len`)
    ///
    /// `offset == 0`:
    ///   (1) first, second <- None; `st0` <- false
    ///   (2) first <- None, second <- `src_len > 0` ? src : None; `st0` <- false
    ///   (3) first <- None, second <- `src_len > 0` ? src : zero-len; `st0` <- false
    ///   (4) first <- zero-len, second <- `src_len > 0` ? src : zero-len
    /// `offset > 0 && offset < src_len`: `st0` always set to false
    ///   (1) first, second <- None
    ///   (5) first <- short, second <- None
    ///   (6) first <- short, second <- zero-len
    ///   (7) first <- zero-ext, second <- None
    ///   (8) first <- zero-ext, second <- zero-len
    /// `offset = src_len`:
    ///   (1) first, second <- None; `st0` <- false
    ///   (5,7) first <- ok, second <- None; `st0` <- false
    ///   (6,8) first <- ok, second <- zero-len
    /// `offset > src_len`: operation succeeds anyway, `st0` value is not changed
    /// </pre>
    ///
    /// Rule on `st0` changes: if at least one of the destination registers is set to `None`, or
    /// `offset` value exceeds source string length, `st0` is set to `false`; otherwise its value
    /// is not modified
    #[display("splt:{2}  s16[{0}],a16{1},s16[{3}],s16[{4}]")]
    Splt(
        SplitFlag,
        /** `a16` register index with offset value */ Reg32,
        /** Source */ u8,
        /** Destination 1 */ u8,
        /** Destination 2 */ u8,
    ),

    /// Insert value from one of bytestring register at a given index of other bytestring register,
    /// shifting string bytes. If the destination register does not fit the length of the new
    /// string, or the offset exceeds the length of destination string operation behaviour is
    /// defined by the provided [`InsertFlag`].
    ///
    /// <pre>
    /// +--------------------
    /// |       | ....
    /// +--------------------
    ///         ^       ^
    ///         |       +-- Insert offset (`offset`)
    ///         +-- Destination string length (`dst_len`)
    ///
    /// `offset < dst_len && src_len + dst_len > 2^16`:
    ///   (6) Set destination to `None`
    ///   (7) Cut destination string part exceeding `2^16`
    ///   (8) Reduce `src_len` such that it will fit the destination
    /// `offset > dst_len && src_len + dst_len + offset <= 2^16`:
    ///   (1) Set destination to `None`
    ///   (2) Fill destination from `dst_let` to `offset` with zeros
    ///   (3) Use `src_len` instead of `offset`
    /// `offset > dst_len && src_len + dst_len + offset > 2^16`:
    ///   (4) Set destination to `None`
    ///   (5) Fill destination from `dst_let` to `offset` with zeros and cut source string part
    ///       exceeding `2^16`
    ///   (6-8) Use `src_len` instead of `offset` and use flag value from the first section
    /// </pre>
    ///
    /// In all of these cases `st0` is set to `false`. Otherwise, `st0` value is not modified.
    #[display("ins:{3}   s16[{0}],s16[{1}],a16{2}")]
    Ins(
        InsertFlag,
        /** `a16` register index with offset value for insert location */ Reg32,
        /** Source register */ u8,
        /** Destination register */ u8,
    ),

    /// Delete bytes in a given range, shifting the remaining bytes leftward. The start offset is
    /// the least offset from one of the `a16` register provided in `offset` arguments, the end
    /// offset is the greatest one. If any of the offsets exceeds the length of the string in
    /// the destination register, operation behaviour is defined by the provided [`DeleteFlag`]
    /// argument.
    ///
    /// <pre>
    /// +----------------------------------
    /// |                   | ....
    /// +----------------------------------
    ///     ^               ^       ^  
    ///     |               |       +-- End offset (`offset_end`)
    ///     |               +-- Source string length (`src_len`)
    ///     +-- Start offset (`offset_start`)
    ///
    /// `offset_start > src_len`:
    ///   (1) set destination to `None`
    ///   (2) set destination to zero-length string
    /// `offset_end > src_len && offser_start <= src_len`:
    ///   (1) set destination to `None`
    ///   (3) set destination to the fragment of the string `offset_start..src_len`
    ///   (4) set destination to the fragment of the string `offset_start..src_len` and extend
    ///       its length up to `offset_end - offset_start` with trailing zeros.
    /// </pre>
    ///
    /// `flag1` and `flag2` arguments indicate whether `st0` should be set to `false` if
    /// `offset_start > src_len` and `offset_end > src_len && offser_start <= src_len`.
    /// In all other cases, `st0` value is not modified.
    #[display("del:{6}   s16[{0}],s16[{1}],{2}{3},{4}{5}")]
    Del(
        DeleteFlag,
        RegA2,
        /** `a8` or `a16` register index with a first offset for delete location */ Reg32,
        RegA2,
        /** `a8` or `a16` register index with a second offset for delete location */ Reg32,
        /** `flag1` indicating `st0` value set to false if `offset_start > src_len` */ bool,
        /** `flag2` indicating `st0` value set to false if
         * `offset_end > src_len && offser_start <= src_len` */
        bool,
        /** Source `s` register */ u8,
        /** Destination `s` register */ u8,
    ),

    /// Revert byte order of the string.
    ///
    /// If the source string register is uninitialized, resets destination to the uninitialized
    /// state and sets `st0` to `false`.
    #[display("rev     s16[{0}],s16[{1}]")]
    Rev(/** Source */ u8, /** Destination */ u8),
}

/// Cryptographic hashing functions
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
#[non_exhaustive]
pub enum DigestOp {
    /// Computes RIPEMD160 hash value.
    ///
    /// Sets `st0` to `false` and destination register to `None` if the source register does not
    /// contain a value
    #[display("ripemd  s16{0},r160{1}")]
    Ripemd(
        /** Index of string register */ Reg32,
        /** Index of `r160` register to save result to */ Reg8,
    ),

    /// Computes SHA256 hash value
    ///
    /// Sets `st0` to `false` and destination register to `None` if the source register does not
    /// contain a value
    #[display("sha2    s16{0},r256{1}")]
    Sha256(
        /** Index of string register */ Reg32,
        /** Index of `r256` register to save result to */ Reg8,
    ),

    /// Computes SHA256 hash value
    ///
    /// Sets `st0` to `false` and destination register to `None` if the source register does not
    /// contain a value
    #[display("sha2    s16{0},r512{1}")]
    Sha512(
        /** Index of string register */ Reg32,
        /** Index of `r512` register to save result to */ Reg8,
    ),
}

/// Operations on Secp256k1 elliptic curve
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum Secp256k1Op {
    /// Generates new elliptic curve point value saved into destination
    /// register in `r512` set using scalar value from the source `r256`
    /// register
    #[display("secpgen r256{0},r512{1}")]
    Gen(
        /** Register containing scalar */ Reg32,
        /** Destination register to put G * scalar */ Reg8,
    ),

    /// Multiplies elliptic curve point on a scalar
    #[display("secpmul {0}256{1},r512{2},r512{3}")]
    Mul(
        /** Use `a` or `r` register as scalar source */ RegBlockAR,
        /** Scalar register index */ Reg32,
        /** Source `r` register index containing EC point */ Reg32,
        /** Destination `r` register index */ Reg32,
    ),

    /// Adds two elliptic curve points
    #[display("secpadd r512{0},r512{1}")]
    Add(/** Source 1 */ Reg32, /** Source 2 and destination */ Reg8),

    /// Negates elliptic curve point
    #[display("secpneg r512{0},r512{1}")]
    Neg(/** Register hilding EC point to negate */ Reg32, /** Destination register */ Reg8),
}

/// Operations on Curve25519 elliptic curve
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Display)]
pub enum Curve25519Op {
    /// Generates new elliptic curve point value saved into destination
    /// register in `r512` set using scalar value from the source `r256`
    /// register
    #[display("edgen   r256{0},r512{1}")]
    Gen(
        /** Register containing scalar */ Reg32,
        /** Destination register to put G * scalar */ Reg8,
    ),

    /// Multiplies elliptic curve point on a scalar
    #[display("edmul   {0}256{1},r512{2},r512{3}")]
    Mul(
        /** Use `a` or `r` register as scalar source */ RegBlockAR,
        /** Scalar register index */ Reg32,
        /** Source `r` register index containing EC point */ Reg32,
        /** Destination `r` register index */ Reg32,
    ),

    /// Adds two elliptic curve points
    #[display("edadd   r512{0},r512{1},r512{2},{3}")]
    Add(
        /** Source 1 */ Reg32,
        /** Source 2 */ Reg32,
        /** Source 3 */ Reg32,
        /** Allow overflows */ bool,
    ),

    /// Negates elliptic curve point
    #[display("edneg   r512{0},r512{1}")]
    Neg(/** Register hilding EC point to negate */ Reg32, /** Destination register */ Reg8),
}