1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
//! Serial

use core::marker::PhantomData;
use core::ptr;

use hal::serial;
use nb;
use stm32f30x::{Interrupt, RCC, USART1, USART2, USART3};
use void::Void;

use gpio::{AltFn, HighSpeed, PinMode, PullType, PushPull, AF7};
use gpio::{PA10, PA14, PA15, PA2, PA3, PA9};
use gpio::{PB10, PB11, PB3, PB4, PB6, PB7};
use gpio::{PC10, PC11, PC4, PC5};
use gpio::{PD5, PD6, PD8, PD9};
use gpio::{PE0, PE1, PE15};
use rcc::Clocks;
use time::Bps;

/// Interrupt event
pub enum Event {
    /// New data has been received
    Rxne,
    /// New data can be sent
    Txe,
}

/// Serial error
#[derive(Debug)]
pub enum Error {
    /// Framing error
    Framing,
    /// Noise error
    Noise,
    /// RX buffer overrun
    Overrun,
    /// Parity check error
    Parity,
    #[doc(hidden)]
    _Extensible,
}

/// Serial abstraction
pub struct Serial<USART, PINS> {
    usart: USART,
    pins: PINS,
}

/// Serial receiver
pub struct Rx<USART> {
    _usart: PhantomData<USART>,
}

/// Serial transmitter
pub struct Tx<USART> {
    _usart: PhantomData<USART>,
}

/// Serial extension for USART
pub trait SerialExt<USART, ITX, IRX, TX, RX> {
    /// Configures USART and consumes pair of (tx, rx) pins
    /// to act as serial port.
    /// Configures pins accordingly.
    /// Returns [`Serial`].
    ///
    /// [`Serial`]: ./struct.Serial.html
    fn serial(self,
              pins: (ITX, IRX),
              baud_rate: Bps,
              clocks: Clocks)
              -> Serial<USART, (TX, RX)>;
}

macro_rules! serial {
    ($USARTX:ident,
     $INTNAME:ident,
     $apbenr:ident,
     $apbrstr:ident,
     $usartXen:ident,
     $usartXrst:ident,
     $pclkX:ident,
     $afn:ident,
     $speed:ident,
     [$($txpin: ident, )+],
     $restrx: tt
    ) => {
        serial!{$USARTX,
                $INTNAME,
                $apbenr,
                $apbrstr,
                $usartXen,
                $usartXrst,
                $pclkX,
                $afn,
                $speed,
                [$(
                    ($txpin, $restrx),
                )+]}
    };
    ($USARTX:ident,
     $INTNAME:ident,
     $apbenr:ident,
     $apbrstr:ident,
     $usartXen:ident,
     $usartXrst:ident,
     $pclkX:ident,
     $afn:ident,
     $speed:ident,
     [$(($txpin: ident, [$($rxpin: ident,)+]), )+]
    ) => {
        $(
            $(
                impl <PT: PullType,
                PM: PinMode>
                    SerialExt<$USARTX,
                $txpin<PT, PM>,
                $rxpin<PT, PM>,
                $txpin<PT, AltFn<$afn, PushPull, $speed>>,
                $rxpin<PT, AltFn<$afn, PushPull, $speed>>>
                    for $USARTX {
                        fn serial(self,
                                  pins: ($txpin<PT, PM>, $rxpin<PT, PM>),
                                  baud_rate: Bps,
                                  clocks: Clocks)
                                  -> Serial<$USARTX, ($txpin<PT, AltFn<$afn, PushPull, $speed>>,
                                                      $rxpin<PT, AltFn<$afn, PushPull, $speed>>)>
                        {
                            let outpins = (
                                pins.0
                                    .alternating($afn)
                                    .output_speed($speed),
                                pins.1
                                    .alternating($afn)
                                    .output_speed($speed),
                            );

                            // enable or reset $USARTX
                            let apbenr = unsafe { &(*RCC::ptr()).$apbenr };
                            let apbrstr = unsafe { &(*RCC::ptr()).$apbrstr };
                            apbenr.modify(|_, w| w.$usartXen().enabled());
                            apbrstr.modify(|_, w| w.$usartXrst().set_bit());
                            apbrstr.modify(|_, w| w.$usartXrst().clear_bit());
                            // disable hardware flow control
                            // TODO enable DMA
                            // usart.cr3.write(|w| w.rtse().clear_bit().ctse().clear_bit());

                            let brr = clocks.$pclkX().0 / baud_rate.0;
                            assert!(brr >= 16, "impossible baud rate");
                            self.brr.write(|w| unsafe { w.bits(brr) });

                            // UE: enable USART
                            // RE: enable receiver
                            // TE: enable transceiver
                            self.cr1.write(|w| {
                                w.ue()
                                    .set_bit()
                                    .re()
                                    .set_bit()
                                    .te()
                                    .set_bit()
                            });

                            Serial { usart: self,
                                     pins: outpins, }
                        }
                    }
            )+
        )+

        impl<TX, RX> Serial<$USARTX, (TX, RX)> {
            /// Returns associated interrupt
            pub fn get_interrupt(&self) -> Interrupt {
                Interrupt::$INTNAME
            }

            /// Starts listening for an interrupt event
            pub fn listen(&mut self, event: Event) {
                match event {
                    Event::Rxne => {
                        self.usart.cr1.modify(|_, w| w.rxneie().set_bit())
                    }
                    Event::Txe => {
                        self.usart.cr1.modify(|_, w| w.txeie().set_bit())
                    }
                }
            }

            /// Starts listening for an interrupt event
            pub fn unlisten(&mut self, event: Event) {
                match event {
                    Event::Rxne => {
                        self.usart.cr1.modify(|_, w| w.rxneie().clear_bit())
                    }
                    Event::Txe => {
                        self.usart.cr1.modify(|_, w| w.txeie().clear_bit())
                    }
                }
            }

            /// Splits the `Serial` abstraction into a transmitter and a
            /// receiver half
            pub fn split(self) -> (Tx<$USARTX>, Rx<$USARTX>) {
                (Tx { _usart: PhantomData, }, Rx { _usart: PhantomData, })
            }

            /// Releases the USART peripheral and associated pins
            pub fn free(self) -> ($USARTX, (TX, RX)) {
                (self.usart, self.pins)
            }
        }

        impl Rx<$USARTX> {
            /// clear overrun
            pub fn clear_overrun_error(&mut self) -> u8 {
                unsafe { (*$USARTX::ptr()).icr.write(|w| w.orecf().set_bit()) };
                let rdr = unsafe { (*$USARTX::ptr()).rdr.read() };
                (rdr.bits() & 0xFF) as u8
            }

            /// clear framing error
            pub fn clear_framing_error(&mut self) -> u8 {
                unsafe { (*$USARTX::ptr()).icr.write(|w| w.fecf().set_bit()) };
                let rdr = unsafe { (*$USARTX::ptr()).rdr.read() };
                (rdr.bits() & 0xFF) as u8
            }

            /// clear noise error
            pub fn clear_noise_error(&mut self) -> u8 {
                unsafe { (*$USARTX::ptr()).icr.write(|w| w.ncf().set_bit()) };
                let rdr = unsafe { (*$USARTX::ptr()).rdr.read() };
                (rdr.bits() & 0xFF) as u8
            }
        }

        impl serial::Read<u8> for Rx<$USARTX> {
            type Error = Error;

            fn read(&mut self) -> nb::Result<u8, Error> {
                // NOTE(unsafe) atomic read with no side effects
                let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                Err(if isr.pe().bit_is_set() {
                    nb::Error::Other(Error::Parity)
                } else if isr.fe().bit_is_set() {
                    nb::Error::Other(Error::Framing)
                } else if isr.nf().bit_is_set() {
                    nb::Error::Other(Error::Noise)
                } else if isr.ore().bit_is_set() {
                    nb::Error::Other(Error::Overrun)
                } else if isr.rxne().bit_is_set() {
                    // NOTE(read_volatile) see `write_volatile` below
                    return Ok(unsafe {
                        ptr::read_volatile(&(*$USARTX::ptr()).rdr as *const _
                                           as *const _)
                    });
                } else {
                    nb::Error::WouldBlock
                })
            }
        }

        impl serial::Write<u8> for Tx<$USARTX> {
            // NOTE(Void) See section "29.7 USART interrupts"; the only
            // possible errors during transmission are: clear to send
            // (which is disabled in this case)
            // errors and framing errors (which only occur in SmartCard
            // mode); neither of these apply to our hardware configuration
            type Error = Void;

            fn flush(&mut self) -> nb::Result<(), Void> {
                // NOTE(unsafe) atomic read with no side effects
                let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                if isr.tc().bit_is_set() {
                    Ok(())
                } else {
                    Err(nb::Error::WouldBlock)
                }
            }

            fn write(&mut self, byte: u8) -> nb::Result<(), Void> {
                // NOTE(unsafe) atomic read with no side effects
                let isr = unsafe { (*$USARTX::ptr()).isr.read() };

                if isr.txe().bit_is_set() {
                    // NOTE(unsafe) atomic write to stateless register
                    // NOTE(write_volatile) 8-bit write that's not possible
                    // through the svd2rust API
                    unsafe {
                        ptr::write_volatile(&(*$USARTX::ptr()).tdr as *const _
                                            as *mut _,
                                            byte)
                    }
                    Ok(())
                } else {
                    Err(nb::Error::WouldBlock)
                }
            }
        }
    };
}

// XXX: we can't use GATs yet, so had to retort to macros
serial!(USART1,
        USART1_EXTI25,
        apb2enr,
        apb2rstr,
        usart1en,
        usart1rst,
        pclk2,
        AF7,
        HighSpeed, // XXX: not sure, maybe we should allow setting this
        [PA9, PB6, PC4, PE0,],
        [PA10, PB7, PC5, PE1,]);
serial!(USART2,
        USART2_EXTI26,
        apb1enr,
        apb1rstr,
        usart2en,
        usart2rst,
        pclk1,
        AF7,
        HighSpeed,
        [PA2, PA14, PB3, PD5,],
        [PA3, PA15, PB4, PD6,]);
serial!(USART3,
        USART3_EXTI28,
        apb1enr,
        apb1rstr,
        usart3en,
        usart3rst,
        pclk1,
        AF7,
        HighSpeed,
        [PB10, PC10, PD8,],
        [PB11, PC11, PD9, PE15,]);