1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
/// An `N`-by-`M` Column Major matrix.
use super::*;

/// An `N`-by-`M` Column Major matrix.
///
/// Matrices can be created from arrays of Vectors of any size and scalar type.
/// As with Vectors there are convenience constructor functions for square
/// matrices of the most common sizes.
///
/// ```ignore
/// # use aljabar::*;
/// let a = Matrix::<f32, 3, 3>::from( [ vector!( 1.0, 0.0, 0.0 ),
///                                      vector!( 0.0, 1.0, 0.0 ),
///                                      vector!( 0.0, 0.0, 1.0 ), ] );
/// let b: Matrix::<i32, 3, 3> = matrix![
///     [ 0, -3, 5 ],
///     [ 6, 1, -4 ],
///     [ 2, 3, -2 ]
/// ];
/// ```
///
/// All operations performed on matrices produce fixed-size outputs. For
/// example, taking the `transpose` of a non-square matrix will produce a matrix
/// with the width and height swapped:
///
/// ```ignore
/// # use aljabar::*;
/// assert_eq!(
///     Matrix::<i32, 1, 2>::from( [ vector!( 1 ), vector!( 2 ) ] )
///         .transpose(),
///     Matrix::<i32, 2, 1>::from( [ vector!( 1, 2 ) ] )
/// );
/// ```
///
/// # Indexing
///
/// Matrices can be indexed by either their native column major storage or by
/// the more natural row major method. In order to use row-major indexing, call
/// `.index` or `.index_mut` on the matrix with a pair of indices. Calling
/// `.index` with a single index will produce a vector representing the
/// appropriate column of the matrix.
///
/// ```
/// # use aljabar::*;
/// let m: Matrix::<i32, 2, 2> = matrix![
///     [ 0, 2 ],
///     [ 1, 3 ],
/// ];
///
/// // Column-major indexing:
/// assert_eq!(m[0][0], 0);
/// assert_eq!(m[0][1], 1);
/// assert_eq!(m[1][0], 2);
/// assert_eq!(m[1][1], 3);
///
/// // Row-major indexing:
/// assert_eq!(m[(0, 0)], 0);
/// assert_eq!(m[(1, 0)], 1);
/// assert_eq!(m[(0, 1)], 2);
/// assert_eq!(m[(1, 1)], 3);
/// ```
///
/// # Iterating
///
/// Matrices are iterated most naturally over their columns, for which the
/// following three functions are provided:
///
/// * [column_iter](Matrix::column_iter), for immutably iterating over columns.
/// * [column_iter_mut](Matrix::column_iter_mut), for mutably iterating over
///   columns.
/// * [into_iter](IntoIterator::into_iter), for taking ownership of the columns.
///
/// Matrices can also be iterated over by their rows, however they can only
/// be iterated over by [RowViews](RowView), as they are not the natural
/// storage for Matrices. The following functions are provided:
///
/// * [row_iter](Matrix::row_iter), for immutably iterating over row views.
/// * [row_iter_mut](Matrix::row_iter_mut), for mutably iterating over row views
///   ([RowViewMut]).
/// * In order to take ownership of the rows of the matrix, `into_iter` should
///   called on the result of a [transpose](Matrix::transpose).
#[repr(transparent)]
pub struct Matrix<T, const N: usize, const M: usize>(pub(crate) [Vector<T, { N }>; M]);

impl<T, const N: usize, const M: usize> Matrix<T, { N }, { M }> {
    /// Swap the two given columns in-place.
    pub fn swap_columns(&mut self, a: usize, b: usize) {
        unsafe { core::ptr::swap(&mut self.0[a], &mut self.0[b]) };
    }

    /// Swap the two given rows in-place.
    pub fn swap_rows(&mut self, a: usize, b: usize) {
        for v in self.0.iter_mut() {
            unsafe { core::ptr::swap(&mut v[a], &mut v[b]) };
        }
    }

    /// Swap the two given elements at index `a` and index `b`.
    ///
    /// The indices are expressed in the form `(column, row)`, which may be
    /// confusing given the indexing strategy for matrices.
    pub fn swap_elements(&mut self, (acol, arow): (usize, usize), (bcol, brow): (usize, usize)) {
        unsafe { core::ptr::swap(&mut self[acol][arow], &mut self[bcol][brow]) };
    }

    /// Returns an immutable iterator over the columns of the matrix.
    pub fn column_iter<'a>(&'a self) -> impl Iterator<Item = &'a Vector<T, { N }>> {
        self.0.iter()
    }

    /// Returns a mutable iterator over the columns of the matrix.
    pub fn column_iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut Vector<T, { N }>> {
        self.0.iter_mut()
    }

    /// Returns an immutable iterator over the rows of the matrix.
    pub fn row_iter<'a>(&'a self) -> impl Iterator<Item = RowView<'a, T, { N }, { M }>> {
        RowIter {
            row:    0,
            matrix: self,
        }
    }

    /// Returns a mutable iterator over the rows of the matrix
    pub fn row_iter_mut<'a>(&'a mut self) -> impl Iterator<Item = RowViewMut<'a, T, { N }, { M }>> {
        RowIterMut {
            row:     0,
            matrix:  self,
            phantom: PhantomData,
        }
    }

    /// Applies the given function to each element of the matrix, constructing a
    /// new matrix with the returned outputs.
    pub fn map<Out, F>(self, mut f: F) -> Matrix<Out, { N }, { M }>
    where
        F: FnMut(T) -> Out,
    {
        let mut from = MaybeUninit::new(self);
        let mut to = MaybeUninit::<Matrix<Out, { N }, { M }>>::uninit();
        let fromp: *mut MaybeUninit<Vector<T, { N }>> = unsafe { mem::transmute(&mut from) };
        let top: *mut Vector<Out, { N }> = unsafe { mem::transmute(&mut to) };
        for i in 0..M {
            unsafe {
                let fromp: *mut MaybeUninit<T> = mem::transmute(fromp.add(i));
                let top: *mut Out = mem::transmute(top.add(i));
                for j in 0..N {
                    top.add(j)
                        .write(f(fromp.add(j).replace(MaybeUninit::uninit()).assume_init()));
                }
            }
        }
        unsafe { to.assume_init() }
    }

    /// Returns the transpose of the matrix.
    pub fn transpose(self) -> Matrix<T, { M }, { N }> {
        let mut from = MaybeUninit::new(self);
        let mut trans = MaybeUninit::<[Vector<T, { M }>; N]>::uninit();
        let fromp: *mut Vector<MaybeUninit<T>, { N }> = unsafe { mem::transmute(&mut from) };
        let transp: *mut Vector<T, { M }> = unsafe { mem::transmute(&mut trans) };
        for j in 0..N {
            // Fetch the current row
            let mut row = MaybeUninit::<[T; M]>::uninit();
            let rowp: *mut T = unsafe { mem::transmute(&mut row) };
            for k in 0..M {
                unsafe {
                    let fromp: *mut MaybeUninit<T> = mem::transmute(fromp.add(k));
                    rowp.add(k)
                        .write(fromp.add(j).replace(MaybeUninit::uninit()).assume_init());
                }
            }
            let row = Vector::<T, { M }>::from(unsafe { row.assume_init() });
            unsafe {
                transp.add(j).write(row);
            }
        }
        Matrix::<T, { M }, { N }>(unsafe { trans.assume_init() })
    }
}

impl<T, const N: usize> Matrix<T, { N }, { N }>
where
    T: Clone,
{
    /// Return the diagonal of the matrix. Only available for square matrices.
    pub fn diagonal(&self) -> Vector<T, { N }> {
        let mut diag = MaybeUninit::<[T; N]>::uninit();
        let diagp: *mut T = unsafe { mem::transmute(&mut diag) };
        for i in 0..N {
            unsafe {
                diagp.add(i).write(self.0[i].0[i].clone());
            }
        }
        Vector::<T, { N }>(unsafe { diag.assume_init() })
    }
}

impl<T, const N: usize> Matrix<T, { N }, { N }>
where
    T: Clone + PartialOrd + Product + Real + One + Zero,
    T: Neg<Output = T>,
    T: Add<T, Output = T> + Sub<T, Output = T>,
    T: Mul<T, Output = T> + Div<T, Output = T>,
    Self: Add<Self>,
    Self: Sub<Self>,
    Self: Mul<Self>,
    Self: Mul<Vector<T, { N }>, Output = Vector<T, { N }>>,
{
    /// Returns the [LU decomposition](https://en.wikipedia.org/wiki/LU_decomposition) of
    /// the matrix, if one exists.
    pub fn lu(mut self) -> Option<LU<T, { N }>> {
        let mut p = Permutation::<{ N }>::unit();

        for i in 0..N {
            let mut max_a = T::zero();
            let mut imax = i;
            for k in i..N {
                let abs = self[i][k].clone().abs();
                if abs > max_a {
                    max_a = abs;
                    imax = k;
                }
            }

            /* Check if matrix is degenerate */
            if max_a.is_zero() {
                return None;
            }

            /* Pivot rows */
            if imax != i {
                p.swap(i, imax);
                self.swap_rows(i, imax);
            }

            for j in i + 1..N {
                self[(j, i)] = self[(j, i)].clone() / self[(i, i)].clone();
                for k in i + 1..N {
                    self[(j, k)] =
                        self[(j, k)].clone() - self[(j, i)].clone() * self[(i, k)].clone();
                }
            }
        }
        Some(LU(p, self))
    }

    /// Returns the [determinant](https://en.wikipedia.org/wiki/Determinant) of
    /// the matrix.
    pub fn determinant(&self) -> T {
        self.clone().lu().map_or(T::zero(), |x| x.determinant())
    }

    /// Attempt to invert the matrix. For square matrices greater in size than
    /// three, [LU] decomposition is guaranteed to be used.
    pub fn invert(self) -> Option<Self> {
        self.lu().map(|x| x.invert())
    }
}

impl<T, const N: usize, const M: usize> From<[Vector<T, { N }>; M]>
    for Matrix<T, { N }, { M }>
{
    fn from(array: [Vector<T, { N }>; M]) -> Self {
        Matrix::<T, { N }, { M }>(array)
    }
}

impl<T, const N: usize, const M: usize> From<[[T; N]; M]> for Matrix<T, { N }, { M }> {
    fn from(array: [[T; N]; M]) -> Self {
        let mut array = MaybeUninit::<[[T; N]; M]>::new(array);
        let mut vec_array: MaybeUninit<[Vector<T, { N }>; M]> = MaybeUninit::uninit();
        let arrayp: *mut MaybeUninit<[T; N]> = unsafe { mem::transmute(&mut array) };
        let vec_arrayp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut vec_array) };
        for i in 0..M {
            unsafe {
                vec_arrayp.add(i).write(Vector::<T, { N }>(
                    arrayp.add(i).replace(MaybeUninit::uninit()).assume_init(),
                ));
            }
        }
        Matrix::<T, { N }, { M }>(unsafe { vec_array.assume_init() })
    }
}

impl<T> From<Quaternion<T>> for Matrix3<T>
where
    // This is really annoying to implement with
    T: Add + Mul + Sub + Real + One + Copy + Clone,
{
    fn from(quat: Quaternion<T>) -> Self {
        // Taken from cgmath
        let x2 = quat.v.x() + quat.v.x();
        let y2 = quat.v.y() + quat.v.y();
        let z2 = quat.v.z() + quat.v.z();

        let xx2 = x2 * quat.v.x();
        let xy2 = x2 * quat.v.y();
        let xz2 = x2 * quat.v.z();

        let yy2 = y2 * quat.v.y();
        let yz2 = y2 * quat.v.z();
        let zz2 = z2 * quat.v.z();

        let sy2 = y2 * quat.s;
        let sz2 = z2 * quat.s;
        let sx2 = x2 * quat.s;

        matrix![
            [T::one() - yy2 - zz2, xy2 + sz2, xz2 - sy2],
            [xy2 - sz2, T::one() - xx2 - zz2, yz2 + sx2],
            [xz2 + sy2, yz2 - sx2, T::one() - xx2 - yy2],
        ]
    }
}

/// A 2-by-2 square matrix.
pub type Matrix2<T> = Matrix<T, 2, 2>;

/// A 3-by-3 square matrix.
pub type Matrix3<T> = Matrix<T, 3, 3>;

/// A 4-by-4 square matrix.
pub type Matrix4<T> = Matrix<T, 4, 4>;

/// Constructs a new matrix from an array, using the more visually natural row
/// major order. Necessary to help the compiler. Prefer calling the macro
/// `matrix!`, which calls `new_matrix` internally.
#[inline]
#[doc(hidden)]
pub fn new_matrix<T: Clone, const N: usize, const M: usize>(
    rows: [[T; M]; N],
) -> Matrix<T, { N }, { M }> {
    Matrix::<T, { M }, { N }>::from(rows).transpose()
}

/// Construct a [Matrix] of any size. The matrix is specified in row-major
/// order, but this function converts it to aljabar's native column-major order.
///
/// ```ignore
/// # use aljabar::*;
/// // `matrix` allows you to create a matrix using natural writing order (row-major).
/// let m1: Matrix<u32, 4, 3> = matrix![
///     [0, 1, 2],
///     [3, 4, 5],
///     [6, 7, 8],
///     [9, 0, 1],
/// ];
///
/// // The equivalent code using the From implementation is below. Note the From
/// // usage requires you to specify the entries in column-major order, and create
/// // the sub-Vectors explicitly.
/// let m2: Matrix<u32, 4, 3> = Matrix::<u32, 4, 3>::from([
///     Vector::<u32, 4>::from([0, 3, 6, 9]),
///     Vector::<u32, 4>::from([1, 4, 7, 0]),
///     Vector::<u32, 4>::from([2, 5, 8, 1]),
/// ]);
///
/// assert_eq!(m1, m2);
/// ```
#[macro_export]
macro_rules! matrix {
    ( $item:expr ) => {
     $crate::new_matrix([
            [ $item ]
        ])
    };

    ( $($rows:expr),* $(,)? ) => {
        $crate::new_matrix([
            $($rows),*
        ])
    };
}

impl<T, const N: usize, const M: usize> Clone for Matrix<T, { N }, { M }>
where
    T: Clone,
{
    fn clone(&self) -> Self {
        Matrix::<T, { N }, { M }>(self.0.clone())
    }
}

impl<T, const N: usize, const M: usize> Copy for Matrix<T, { N }, { M }> where T: Copy {}

impl<T, const N: usize, const M: usize> Deref for Matrix<T, { N }, { M }> {
    type Target = [Vector<T, { N }>; M];

    fn deref(&self) -> &Self::Target {
        &self.0
    }
}

impl<T, const N: usize, const M: usize> DerefMut for Matrix<T, { N }, { M }> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.0
    }
}

impl<T, const N: usize, const M: usize> Hash for Matrix<T, { N }, { M }>
where
    T: Hash,
{
    fn hash<H: Hasher>(&self, state: &mut H) {
        for i in 0..M {
            self.0[i].hash(state);
        }
    }
}

impl<T, const N: usize, const M: usize> FromIterator<T> for Matrix<T, { N }, { M }> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = T>,
    {
        let mut iter = iter.into_iter();
        let mut new = MaybeUninit::<[Vector<T, { N }>; M]>::uninit();
        let newp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut new) };

        for i in 0..M {
            let mut newv = MaybeUninit::<Vector<T, { N }>>::uninit();
            let newvp: *mut T = unsafe { mem::transmute(&mut newv) };
            for j in 0..N {
                if let Some(next) = iter.next() {
                    unsafe { newvp.add(j).write(next) };
                } else {
                    panic!(
                        "too few items in iterator to create Matrix<_, {}, {}>",
                        N, M
                    );
                }
            }
            unsafe {
                newp.add(i)
                    .write(mem::replace(&mut newv, MaybeUninit::uninit()).assume_init());
            }
        }

        if iter.next().is_some() {
            panic!(
                "too many items in iterator to create Matrix<_, {}, {}>",
                N, M
            );
        }

        Matrix::<T, { N }, { M }>(unsafe { new.assume_init() })
    }
}

impl<T, const N: usize, const M: usize> FromIterator<Vector<T, { N }>> for Matrix<T, { N }, { M }> {
    fn from_iter<I>(iter: I) -> Self
    where
        I: IntoIterator<Item = Vector<T, { N }>>,
    {
        let mut iter = iter.into_iter();
        let mut new = MaybeUninit::<[Vector<T, { N }>; M]>::uninit();
        let newp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut new) };

        for i in 0..M {
            if let Some(v) = iter.next() {
                unsafe {
                    newp.add(i).write(v);
                }
            } else {
                panic!(
                    "too few items in iterator to create Matrix<_, {}, {}>",
                    N, M
                );
            }
        }
        Matrix::<T, { N }, { M }>(unsafe { new.assume_init() })
    }
}

impl<T, const N: usize, const M: usize> IntoIterator for Matrix<T, { N }, { M }> {
    type Item = Vector<T, { N }>;
    type IntoIter = ArrayIter<Vector<T, { N }>, { M }>;

    fn into_iter(self) -> Self::IntoIter {
        let Matrix(array) = self;
        ArrayIter {
            array: MaybeUninit::new(array),
            pos:   0,
        }
    }
}

impl<T, const N: usize, const M: usize> Zero for Matrix<T, { N }, { M }>
where
    T: Zero,
    // This bound is a consequence of the previous, but I'm going to preemptively
    // help out the compiler a bit on this one.
    Vector<T, { N }>: Zero,
{
    fn zero() -> Self {
        let mut zero_mat = MaybeUninit::<[Vector<T, { N }>; M]>::uninit();
        let matp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut zero_mat) };

        for i in 0..M {
            unsafe {
                matp.add(i).write(Vector::<T, { N }>::zero());
            }
        }

        Matrix::<T, { N }, { M }>(unsafe { zero_mat.assume_init() })
    }

    fn is_zero(&self) -> bool {
        for i in 0..M {
            if !self.0[i].is_zero() {
                return false;
            }
        }
        true
    }
}

/// Constructs a unit matrix.
impl<T, const N: usize> One for Matrix<T, { N }, { N }>
where
    T: Zero + One + Clone,
    Self: PartialEq<Self>,
{
    fn one() -> Self {
        let mut unit_mat = MaybeUninit::<[Vector<T, { N }>; N]>::uninit();
        let matp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut unit_mat) };
        for i in 0..N {
            let mut unit_vec = MaybeUninit::<Vector<T, { N }>>::uninit();
            let vecp: *mut T = unsafe { mem::transmute(&mut unit_vec) };
            for j in 0..i {
                unsafe {
                    vecp.add(j).write(<T as Zero>::zero());
                }
            }
            unsafe {
                vecp.add(i).write(<T as One>::one());
            }
            for j in (i + 1)..N {
                unsafe {
                    vecp.add(j).write(<T as Zero>::zero());
                }
            }
            unsafe {
                matp.add(i).write(unit_vec.assume_init());
            }
        }
        Matrix::<T, { N }, { N }>(unsafe { unit_mat.assume_init() })
    }

    fn is_one(&self) -> bool {
        self == &<Self as One>::one()
    }
}

impl<T, const N: usize, const M: usize> Index<usize> for Matrix<T, { N }, { M }> {
    type Output = Vector<T, { N }>;

    fn index(&self, column: usize) -> &Self::Output {
        &self.0[column]
    }
}

impl<T, const N: usize, const M: usize> IndexMut<usize> for Matrix<T, { N }, { M }> {
    fn index_mut(&mut self, column: usize) -> &mut Self::Output {
        &mut self.0[column]
    }
}

impl<T, const N: usize, const M: usize> Index<(usize, usize)> for Matrix<T, { N }, { M }> {
    type Output = T;

    fn index(&self, (row, column): (usize, usize)) -> &Self::Output {
        &self.0[column][row]
    }
}

impl<T, const N: usize, const M: usize> IndexMut<(usize, usize)> for Matrix<T, { N }, { M }> {
    fn index_mut(&mut self, (row, column): (usize, usize)) -> &mut Self::Output {
        &mut self.0[column][row]
    }
}

impl<A, B, RHS, const N: usize, const M: usize> PartialEq<RHS> for Matrix<A, { N }, { M }>
where
    RHS: Deref<Target = [Vector<B, { N }>; M]>,
    A: PartialEq<B>,
{
    fn eq(&self, other: &RHS) -> bool {
        for (a, b) in self.0.iter().zip(other.deref().iter()) {
            if !a.eq(b) {
                return false;
            }
        }
        true
    }
}

/// I'm not quite sure how to format the debug output for a matrix.
impl<T, const N: usize, const M: usize> fmt::Debug for Matrix<T, { N }, { M }>
where
    T: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Matrix [ ")?;
        for i in 0..N {
            write!(f, "[ ")?;
            for j in 0..M {
                write!(f, "{:?} ", self.0[j].0[i])?;
            }
            write!(f, "] ")?;
        }
        write!(f, "]")
    }
}

/// Element-wise addition of two equal sized matrices.
impl<A, B, const N: usize, const M: usize> Add<Matrix<B, { N }, { M }>> for Matrix<A, { N }, { M }>
where
    A: Add<B>,
{
    type Output = Matrix<<A as Add<B>>::Output, { N }, { M }>;

    fn add(self, rhs: Matrix<B, { N }, { M }>) -> Self::Output {
        let mut mat = MaybeUninit::<[Vector<<A as Add<B>>::Output, { N }>; M]>::uninit();
        let mut lhs = MaybeUninit::new(self);
        let mut rhs = MaybeUninit::new(rhs);
        let matp: *mut Vector<<A as Add<B>>::Output, { N }> = unsafe { mem::transmute(&mut mat) };
        let lhsp: *mut MaybeUninit<Vector<A, { N }>> = unsafe { mem::transmute(&mut lhs) };
        let rhsp: *mut MaybeUninit<Vector<B, { N }>> = unsafe { mem::transmute(&mut rhs) };
        for i in 0..M {
            unsafe {
                matp.add(i).write(
                    lhsp.add(i).replace(MaybeUninit::uninit()).assume_init()
                        + rhsp.add(i).replace(MaybeUninit::uninit()).assume_init(),
                );
            }
        }
        Matrix::<<A as Add<B>>::Output, { N }, { M }>(unsafe { mat.assume_init() })
    }
}

impl<A, B, const N: usize, const M: usize> AddAssign<Matrix<B, { N }, { M }>>
    for Matrix<A, { N }, { M }>
where
    A: AddAssign<B>,
{
    fn add_assign(&mut self, rhs: Matrix<B, { N }, { M }>) {
        let mut rhs = MaybeUninit::new(rhs);
        let rhsp: *mut MaybeUninit<Vector<B, { N }>> = unsafe { mem::transmute(&mut rhs) };
        for i in 0..M {
            self.0[i] += unsafe { rhsp.add(i).replace(MaybeUninit::uninit()).assume_init() };
        }
    }
}

/// Element-wise subtraction of two equal sized matrices.
impl<A, B, const N: usize, const M: usize> Sub<Matrix<B, { N }, { M }>> for Matrix<A, { N }, { M }>
where
    A: Sub<B>,
{
    type Output = Matrix<<A as Sub<B>>::Output, { N }, { M }>;

    fn sub(self, rhs: Matrix<B, { N }, { M }>) -> Self::Output {
        let mut mat = MaybeUninit::<[Vector<<A as Sub<B>>::Output, { N }>; M]>::uninit();
        let mut lhs = MaybeUninit::new(self);
        let mut rhs = MaybeUninit::new(rhs);
        let matp: *mut Vector<<A as Sub<B>>::Output, { N }> = unsafe { mem::transmute(&mut mat) };
        let lhsp: *mut MaybeUninit<Vector<A, { N }>> = unsafe { mem::transmute(&mut lhs) };
        let rhsp: *mut MaybeUninit<Vector<B, { N }>> = unsafe { mem::transmute(&mut rhs) };
        for i in 0..M {
            unsafe {
                matp.add(i).write(
                    lhsp.add(i).replace(MaybeUninit::uninit()).assume_init()
                        - rhsp.add(i).replace(MaybeUninit::uninit()).assume_init(),
                );
            }
        }
        Matrix::<<A as Sub<B>>::Output, { N }, { M }>(unsafe { mat.assume_init() })
    }
}

impl<A, B, const N: usize, const M: usize> SubAssign<Matrix<B, { N }, { M }>>
    for Matrix<A, { N }, { M }>
where
    A: SubAssign<B>,
{
    fn sub_assign(&mut self, rhs: Matrix<B, { N }, { M }>) {
        let mut rhs = MaybeUninit::new(rhs);
        let rhsp: *mut MaybeUninit<Vector<B, { N }>> = unsafe { mem::transmute(&mut rhs) };
        for i in 0..M {
            self.0[i] -= unsafe { rhsp.add(i).replace(MaybeUninit::uninit()).assume_init() };
        }
    }
}

impl<T, const N: usize, const M: usize> Neg for Matrix<T, { N }, { M }>
where
    T: Neg,
{
    type Output = Matrix<<T as Neg>::Output, { N }, { M }>;

    fn neg(self) -> Self::Output {
        let mut from = MaybeUninit::new(self);
        let mut mat = MaybeUninit::<[Vector<<T as Neg>::Output, { N }>; M]>::uninit();
        let fromp: *mut MaybeUninit<Vector<T, { N }>> = unsafe { mem::transmute(&mut from) };
        let matp: *mut Vector<<T as Neg>::Output, { N }> = unsafe { mem::transmute(&mut mat) };
        for i in 0..M {
            unsafe {
                matp.add(i).write(
                    fromp
                        .add(i)
                        .replace(MaybeUninit::uninit())
                        .assume_init()
                        .neg(),
                );
            }
        }
        Matrix::<<T as Neg>::Output, { N }, { M }>(unsafe { mat.assume_init() })
    }
}

impl<T, const N: usize, const M: usize, const P: usize> Mul<Matrix<T, { M }, { P }>>
    for Matrix<T, { N }, { M }>
where
    T: Add<T, Output = T> + Mul<T, Output = T> + Clone,
    Vector<T, { M }>: InnerSpace,
{
    type Output = Matrix<<Vector<T, { M }> as VectorSpace>::Scalar, { N }, { P }>;

    fn mul(self, rhs: Matrix<T, { M }, { P }>) -> Self::Output {
        // It might not seem that Rust's type system is helping me at all here,
        // but that's absolutely not true. I got the arrays iterations wrong on
        // the first try and Rust was nice enough to inform me of that fact.
        let mut mat = MaybeUninit::<
            [Vector<<Vector<T, { M }> as VectorSpace>::Scalar, { N }>; P],
        >::uninit();
        let matp: *mut Vector<<Vector<T, { M }> as VectorSpace>::Scalar, { N }> =
            unsafe { mem::transmute(&mut mat) };
        for i in 0..P {
            let mut column =
                MaybeUninit::<[<Vector<T, { M }> as VectorSpace>::Scalar; N]>::uninit();
            let columnp: *mut <Vector<T, { M }> as VectorSpace>::Scalar =
                unsafe { mem::transmute(&mut column) };
            for j in 0..N {
                // Fetch the current row:
                let mut row = MaybeUninit::<[T; M]>::uninit();
                let rowp: *mut T = unsafe { mem::transmute(&mut row) };
                for k in 0..M {
                    unsafe {
                        rowp.add(k).write(self.0[k].0[j].clone());
                    }
                }
                let row = Vector::<T, { M }>::from(unsafe { row.assume_init() });
                unsafe {
                    columnp.add(j).write(row.dot(rhs.0[i].clone()));
                }
            }
            let column = Vector::<<Vector<T, { M }> as VectorSpace>::Scalar, { N }>(unsafe {
                column.assume_init()
            });
            unsafe {
                matp.add(i).write(column);
            }
        }
        Matrix::<<Vector<T, { M }> as VectorSpace>::Scalar, { N }, { P }>(unsafe {
            mat.assume_init()
        })
    }
}

impl<T, const N: usize, const M: usize> Mul<Vector<T, { M }>> for Matrix<T, { N }, { M }>
where
    T: Add<T, Output = T> + Mul<T, Output = T> + Clone,
    Vector<T, { M }>: InnerSpace,
{
    type Output = Vector<<Vector<T, { M }> as VectorSpace>::Scalar, { N }>;

    fn mul(self, rhs: Vector<T, { M }>) -> Self::Output {
        let mut column =
            MaybeUninit::<[<Vector<T, { M }> as VectorSpace>::Scalar; N]>::uninit();
        let columnp: *mut <Vector<T, { M }> as VectorSpace>::Scalar =
            unsafe { mem::transmute(&mut column) };
        for j in 0..N {
            // Fetch the current row:
            let mut row = MaybeUninit::<[T; M]>::uninit();
            let rowp: *mut T = unsafe { mem::transmute(&mut row) };
            for k in 0..M {
                unsafe {
                    rowp.add(k).write(self.0[k].0[j].clone());
                }
            }
            let row = Vector::<T, { M }>::from(unsafe { row.assume_init() });
            unsafe {
                columnp.add(j).write(row.dot(rhs.clone()));
            }
        }
        Vector::<<Vector<T, { M }> as VectorSpace>::Scalar, { N }>(unsafe { column.assume_init() })
    }
}

/// Scalar multiply
impl<T, const N: usize, const M: usize> Mul<T> for Matrix<T, { N }, { M }>
where
    T: Mul<T, Output = T> + Clone,
{
    type Output = Matrix<T, { N }, { M }>;

    fn mul(self, scalar: T) -> Self::Output {
        let mut mat = MaybeUninit::<[Vector<T, { N }>; M]>::uninit();
        let matp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut mat) };
        for i in 0..M {
            unsafe {
                matp.add(i).write(self.0[i].clone() * scalar.clone());
            }
        }
        Matrix::<T, { N }, { M }>(unsafe { mat.assume_init() })
    }
}

impl<const N: usize, const M: usize> Mul<Matrix<f32, { N }, { M }>> for f32 {
    type Output = Matrix<f32, { N }, { M }>;

    fn mul(self, mat: Matrix<f32, { N }, { M }>) -> Self::Output {
        mat.map(|x| x * self)
    }
}

impl<const N: usize, const M: usize> Mul<Matrix<f64, { N }, { M }>> for f64 {
    type Output = Matrix<f64, { N }, { M }>;

    fn mul(self, mat: Matrix<f64, { N }, { M }>) -> Self::Output {
        mat.map(|x| x * self)
    }
}

/// Permutation matrix created for LU decomposition.
#[derive(Copy, Clone)]
pub struct Permutation<const N: usize> {
    arr:       [usize; N],
    num_swaps: usize,
}

impl<const N: usize> fmt::Debug for Permutation<{ N }> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[ ")?;
        for i in 0..N {
            write!(f, "{:?} ", self.arr[i])?;
        }
        write!(f, "] ")
    }
}

impl<RHS, const N: usize> PartialEq<RHS> for Permutation<{ N }>
where
    RHS: Deref<Target = [usize; N]>,
{
    fn eq(&self, other: &RHS) -> bool {
        for (a, b) in self.arr.iter().zip(other.deref().iter()) {
            if !a.eq(b) {
                return false;
            }
        }
        true
    }
}

impl<const N: usize> Deref for Permutation<{ N }> {
    type Target = [usize; N];

    fn deref(&self) -> &Self::Target {
        &self.arr
    }
}

impl<const N: usize> DerefMut for Permutation<{ N }> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.arr
    }
}

impl<const N: usize> Permutation<{ N }> {
    /// Returns the unit permutation.
    pub fn unit() -> Permutation<{ N }> {
        let mut arr: [MaybeUninit<usize>; N] = MaybeUninit::uninit_array();
        let arr = unsafe {
            for i in 0..N {
                arr[i] = MaybeUninit::new(i);
            }
            transmute_copy::<_, _>(&arr)
        };
        Permutation { arr, num_swaps: 0 }
    }

    /// Swaps two rows and increments the number of swaps.
    pub fn swap(&mut self, a: usize, b: usize) {
        self.num_swaps += 1;
        self.arr.swap(a, b);
    }

    /// Returns the number of swaps that have occurred.
    pub fn num_swaps(&self) -> usize {
        self.num_swaps
    }
}

impl<T, const N: usize> Mul<Vector<T, { N }>> for Permutation<{ N }>
where
    // The clone bound can be
    // removed from here at some
    // point with better written
    // code.
    T: Clone,
{
    type Output = Vector<T, { N }>;

    fn mul(self, rhs: Vector<T, { N }>) -> Self::Output {
        Vector::from_iter((0..N).map(|i| rhs[self[i]].clone()))
    }
}

/// The result of LU factorizing a square matrix with partial-pivoting.
#[derive(Copy, Clone, Debug)]
pub struct LU<T, const N: usize>(Permutation<{ N }>, Matrix<T, { N }, { N }>);

impl<T, const N: usize> Index<(usize, usize)> for LU<T, { N }> {
    type Output = T;

    fn index(&self, (row, column): (usize, usize)) -> &Self::Output {
        &self.1[(row, column)]
    }
}

impl<T, const N: usize> LU<T, { N }>
where
    T: Clone
        + PartialEq
        + One
        + Zero
        + Product
        + Neg<Output = T>
        + Sub<T, Output = T>
        + Mul<T, Output = T>
        + Div<T, Output = T>,
{
    /// Returns the permutation sequence of the factorization.
    pub fn p(&self) -> &Permutation<{ N }> {
        &self.0
    }

    /// Solves the linear equation `self * x = b` and returns `x`.
    pub fn solve(&self, b: Vector<T, { N }>) -> Vector<T, { N }> {
        let mut x = self.0.clone() * b;
        for i in 0..N {
            for k in 0..i {
                x[i] = x[i].clone() - self[(i, k)].clone() * x[k].clone();
            }
        }

        for i in (0..N).rev() {
            for k in i + 1..N {
                x[i] = x[i].clone() - self[(i, k)].clone() * x[k].clone();
            }

            // TODO(map): Consider making DivAssign a requirement so that we
            // don't have to clone here.
            x[i] = x[i].clone() / self[(i, i)].clone();
        }
        x
    }

    /// Returns the determinant of the matrix.
    pub fn determinant(&self) -> T {
        let det: T = self.1.diagonal().into_iter().product();
        if self.0.num_swaps % 2 == 1 {
            -det
        } else {
            det
        }
    }

    /// Returns the inverse of the matrix, which is certain to exist.
    pub fn invert(self) -> Matrix<T, { N }, { N }> {
        Matrix::<T, { N }, { N }>::one()
            .into_iter()
            .map(|col| self.solve(col))
            .collect()
    }
}

#[cfg(feature = "rand")]
impl<T, const N: usize, const M: usize> Distribution<Matrix<T, { N }, { M }>> for Standard
where
    Standard: Distribution<Vector<T, { N }>>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Matrix<T, { N }, { M }> {
        let mut rand = MaybeUninit::<[Vector<T, { N }>; { M }]>::uninit();
        let randp: *mut Vector<T, { N }> = unsafe { mem::transmute(&mut rand) };

        for i in 0..M {
            unsafe {
                randp.add(i).write(self.sample(rng));
            }
        }

        Matrix::<T, { N }, { M }>(unsafe { rand.assume_init() })
    }
}

#[cfg(feature = "serde")]
impl<T, const N: usize, const M: usize> Serialize for Matrix<T, { N }, { M }>
where
    Vector<T, { N }>: Serialize,
{
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: Serializer,
    {
        let mut seq = serializer.serialize_tuple(M)?;
        for i in 0..M {
            seq.serialize_element(&self.0[i])?;
        }
        seq.end()
    }
}

#[cfg(feature = "serde")]
impl<'de, T, const N: usize, const M: usize> Deserialize<'de> for Matrix<T, { N }, { M }>
where
    T: Deserialize<'de>,
{
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: Deserializer<'de>,
    {
        deserializer
            .deserialize_tuple(N, ArrayVisitor::<[Vector<T, { N }>; { M }]>::new())
            .map(Matrix)
    }
}

macro_rules! into_mint_column_matrix {
    ($mint_name:ident, $rows:expr, $cols:expr $( , ($col_name:ident, $col_idx:expr ) )+) => {
        #[cfg(feature = "mint")]
        impl<T: Copy> Into<mint::$mint_name<T>> for Matrix<T, {$rows}, {$cols}> {
            fn into(self) -> mint::$mint_name<T> {
                mint::$mint_name {
                    $(
                        $col_name: self.0[$col_idx].into(),
                    )*
                }
            }
        }
    }
}

into_mint_column_matrix!(ColumnMatrix2, 2, 2, (x, 0), (y, 1));
into_mint_column_matrix!(ColumnMatrix3, 3, 3, (x, 0), (y, 1), (z, 2));
into_mint_column_matrix!(ColumnMatrix4, 4, 4, (x, 0), (y, 1), (z, 2), (w, 3));
into_mint_column_matrix!(ColumnMatrix2x3, 2, 3, (x, 0), (y, 1), (z, 2));
into_mint_column_matrix!(ColumnMatrix2x4, 2, 4, (x, 0), (y, 1), (z, 2), (w, 3));
into_mint_column_matrix!(ColumnMatrix3x2, 3, 2, (x, 0), (y, 1));
into_mint_column_matrix!(ColumnMatrix3x4, 3, 4, (x, 0), (y, 1), (z, 2), (w, 3));
into_mint_column_matrix!(ColumnMatrix4x2, 4, 2, (x, 0), (y, 1));
into_mint_column_matrix!(ColumnMatrix4x3, 4, 3, (x, 0), (y, 1), (z, 2));

macro_rules! from_mint_column_matrix {
    ($mint_name:ident, $rows:expr, $cols:expr, $($component:ident),+) => {
        #[cfg(feature = "mint")]
        impl<T> From<mint::$mint_name<T>> for Matrix<T, {$rows}, {$cols}> {
            fn from(m: mint::$mint_name<T>) -> Self {
                Self([
                    $(
                        Vector::<T, {$rows}>::from(m.$component),
                    )*
                ])
            }
        }
    }
}

from_mint_column_matrix!(ColumnMatrix2, 2, 2, x, y);
from_mint_column_matrix!(ColumnMatrix3, 3, 3, x, y, z);
from_mint_column_matrix!(ColumnMatrix4, 4, 4, x, y, z, w);
from_mint_column_matrix!(ColumnMatrix2x3, 2, 3, x, y, z);
from_mint_column_matrix!(ColumnMatrix2x4, 2, 4, x, y, z, w);
from_mint_column_matrix!(ColumnMatrix3x2, 3, 2, x, y);
from_mint_column_matrix!(ColumnMatrix3x4, 3, 4, x, y, z, w);
from_mint_column_matrix!(ColumnMatrix4x2, 4, 2, x, y);
from_mint_column_matrix!(ColumnMatrix4x3, 4, 3, x, y, z);

macro_rules! into_mint_row_matrix {
    ($mint_name:ident, $rows:expr, $cols:expr $( , ($col_name:ident, $col_idx:expr ) )+) => {
        #[cfg(feature = "mint")]
        impl<T: Copy> Into<mint::$mint_name<T>> for Matrix<T, {$rows}, {$cols}> {
            fn into(self) -> mint::$mint_name<T> {
                let transposed = self.transpose();
                mint::$mint_name {
                    $(
                        $col_name: transposed.0[$col_idx].into(),
                    )*
                }
            }
        }
    }
}

into_mint_row_matrix!(RowMatrix2, 2, 2, (x, 0), (y, 1));
into_mint_row_matrix!(RowMatrix3, 3, 3, (x, 0), (y, 1), (z, 2));
into_mint_row_matrix!(RowMatrix4, 4, 4, (x, 0), (y, 1), (z, 2), (w, 3));
into_mint_row_matrix!(RowMatrix2x3, 2, 3, (x, 0), (y, 1));
into_mint_row_matrix!(RowMatrix2x4, 2, 4, (x, 0), (y, 1));
into_mint_row_matrix!(RowMatrix3x2, 3, 2, (x, 0), (y, 1), (z, 2));
into_mint_row_matrix!(RowMatrix3x4, 3, 4, (x, 0), (y, 1), (z, 2));
into_mint_row_matrix!(RowMatrix4x2, 4, 2, (x, 0), (y, 1), (z, 2), (w, 3));
into_mint_row_matrix!(RowMatrix4x3, 4, 3, (x, 0), (y, 1), (z, 2), (w, 3));

// It would be possible to implement this without a runtime transpose() by
// directly copying the corresponding elements from the mint matrix to the
// appropriate position in the aljabar matrix, but it would be substantially
// more code to do so. I'm leaving it as a transpose for now in the expectation
// that converting between aljabar and mint entities will occur infrequently at
// program boundaries.
macro_rules! from_mint_row_matrix {
    ($mint_name:ident, $rows:expr, $cols:expr, $($component:ident),+) => {
        #[cfg(feature = "mint")]
        impl<T> From<mint::$mint_name<T>> for Matrix<T, {$rows}, {$cols}> {
            fn from(m: mint::$mint_name<T>) -> Self {
                Matrix::<T, {$cols}, {$rows}>([
                    $(
                        Vector::<T, {$cols}>::from(m.$component),
                    )*
                ]).transpose()
            }
        }
    }
}

from_mint_row_matrix!(RowMatrix2, 2, 2, x, y);
from_mint_row_matrix!(RowMatrix3, 3, 3, x, y, z);
from_mint_row_matrix!(RowMatrix4, 4, 4, x, y, z, w);
from_mint_row_matrix!(RowMatrix2x3, 2, 3, x, y);
from_mint_row_matrix!(RowMatrix2x4, 2, 4, x, y);
from_mint_row_matrix!(RowMatrix3x2, 3, 2, x, y, z);
from_mint_row_matrix!(RowMatrix3x4, 3, 4, x, y, z);
from_mint_row_matrix!(RowMatrix4x2, 4, 2, x, y, z, w);
from_mint_row_matrix!(RowMatrix4x3, 4, 3, x, y, z, w);