1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//! Implements Forsyth–Edwards Notation parsing.

use regex::Regex;
use board::*;
use files::*;
use ranks::*;


/// Parses Forsyth–Edwards Notation (FEN).
///
/// Returns a tuple with the following elements: `0`) a board
/// instance, `1`) halfmove clock, `2`) fullmove number.
///
/// # Forsyth–Edwards Notation
///
/// A FEN string defines a particular position using only the ASCII
/// character set. A FEN string contains six fields separated by a
/// space. The fields are:
///
/// 1. Piece placement (from white's perspective). Each rank is
///    described, starting with rank 8 and ending with rank 1. Within
///    each rank, the contents of each square are described from file A
///    through file H. Following the Standard Algebraic Notation (SAN),
///    each piece is identified by a single letter taken from the
///    standard English names. White pieces are designated using
///    upper-case letters ("PNBRQK") whilst Black uses lowercase
///    ("pnbrqk"). Blank squares are noted using digits 1 through 8
///    (the number of blank squares), and "/" separates ranks.
///
/// 2. Active color. "w" means white moves next, "b" means black.
///
/// 3. Castling availability. If neither side can castle, this is
///    "-". Otherwise, this has one or more letters: "K" (White can
///    castle kingside), "Q" (White can castle queenside), "k" (Black
///    can castle kingside), and/or "q" (Black can castle queenside).
///
/// 4. En-passant target square (in algebraic notation). If there's no
///    en-passant target square, this is "-". If a pawn has just made
///    a 2-square move, this is the position "behind" the pawn. This
///    is recorded regardless of whether there is a pawn in position
///    to make an en-passant capture.
///
/// 5. Halfmove clock. This is the number of halfmoves since the last
///    pawn advance or capture. This is used to determine if a draw can
///    be claimed under the fifty-move rule.
///
/// 6. Fullmove number. The number of the full move. It starts at 1,
///    and is incremented after black's move.
///
/// ## Example:
/// The starting position: `rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w QKqk - 0 1`
pub fn parse_fen(s: &str) -> Result<(Board, u8, u16), IllegalBoard> {
    let fileds: Vec<_> = s.split_whitespace().collect();
    if fileds.len() == 6 {
        let pieces = try!(parse_fen_piece_placement(fileds[0]));
        let to_move = try!(parse_fen_active_color(fileds[1]));
        let castling_rights = try!(parse_fen_castling_rights(fileds[2]));
        let enpassant_file = if let Some(x) = try!(parse_fen_enpassant_square(fileds[3])) {
            match to_move {
                WHITE if Board::rank(x) == RANK_6 => Board::file(x),
                BLACK if Board::rank(x) == RANK_3 => Board::file(x),
                _ => return Err(IllegalBoard),
            }
        } else {
            8
        };
        let halfmove_clock = try!(fileds[4].parse::<u8>().map_err(|_| IllegalBoard));
        let fullmove_number = try!(fileds[5].parse::<u16>().map_err(|_| IllegalBoard));
        if let 1...9000 = fullmove_number {
            return Ok((Board {
                occupied: pieces.color[WHITE] | pieces.color[BLACK],
                pieces: pieces,
                to_move: to_move,
                castling_rights: castling_rights,
                enpassant_file: enpassant_file,
            },
                       halfmove_clock,
                       fullmove_number));
        }
    }
    Err(IllegalBoard)
}


/// Parses square's algebraic notation (lowercase only).
pub fn parse_square(s: &str) -> Result<Square, IllegalBoard> {
    lazy_static! {
        static ref RE: Regex = Regex::new(r"^[a-h][1-8]$").unwrap();
    }
    if RE.is_match(s) {
        let mut chars = s.chars();
        let file = (chars.next().unwrap().to_digit(18).unwrap() - 10) as usize;
        let rank = (chars.next().unwrap().to_digit(9).unwrap() - 1) as usize;
        Ok(Board::square(file, rank))
    } else {
        Err(IllegalBoard)
    }
}


fn parse_fen_piece_placement(s: &str) -> Result<PiecesPlacement, IllegalBoard> {
    // These are the possible productions in the grammar.
    enum Token {
        Piece(Color, PieceType),
        EmptySquares(u32),
        Separator,
    }

    // FEN describes the board starting from A8 and going toward H1.
    let mut file = FILE_A;
    let mut rank = RANK_8;

    // We start with an empty board.
    let mut pieces = PiecesPlacement {
        piece_type: [0u64; 6],
        color: [0u64; 2],
    };

    // Then we read `s` character by character, updating `pieces`.
    for c in s.chars() {
        let token = match c {
            'K' => Token::Piece(WHITE, KING),
            'Q' => Token::Piece(WHITE, QUEEN),
            'R' => Token::Piece(WHITE, ROOK),
            'B' => Token::Piece(WHITE, BISHOP),
            'N' => Token::Piece(WHITE, KNIGHT),
            'P' => Token::Piece(WHITE, PAWN),
            'k' => Token::Piece(BLACK, KING),
            'q' => Token::Piece(BLACK, QUEEN),
            'r' => Token::Piece(BLACK, ROOK),
            'b' => Token::Piece(BLACK, BISHOP),
            'n' => Token::Piece(BLACK, KNIGHT),
            'p' => Token::Piece(BLACK, PAWN),
            n @ '1'...'8' => Token::EmptySquares(n.to_digit(9).unwrap()),
            '/' => Token::Separator,
            _ => return Err(IllegalBoard),
        };
        match token {
            Token::Piece(color, piece_type) => {
                if file > 7 {
                    return Err(IllegalBoard);
                }
                let mask = 1 << Board::square(file, rank);
                pieces.piece_type[piece_type] |= mask;
                pieces.color[color] |= mask;
                file += 1;
            }
            Token::EmptySquares(n) => {
                file += n as usize;
                if file > 8 {
                    return Err(IllegalBoard);
                }
            }
            Token::Separator => {
                if file == 8 && rank > 0 {
                    file = 0;
                    rank -= 1;
                } else {
                    return Err(IllegalBoard);
                }
            }
        }
    }

    // Make sure that all squares were initialized.
    if file != 8 || rank != 0 {
        return Err(IllegalBoard);
    }

    Ok(pieces)
}


fn parse_fen_active_color(s: &str) -> Result<Color, IllegalBoard> {
    match s {
        "w" => Ok(WHITE),
        "b" => Ok(BLACK),
        _ => Err(IllegalBoard),
    }
}


fn parse_fen_castling_rights(s: &str) -> Result<CastlingRights, IllegalBoard> {
    let mut rights = CastlingRights::new(0);
    if s != "-" {
        for c in s.chars() {
            let (color, side) = match c {
                'K' => (WHITE, KINGSIDE),
                'Q' => (WHITE, QUEENSIDE),
                'k' => (BLACK, KINGSIDE),
                'q' => (BLACK, QUEENSIDE),
                _ => return Err(IllegalBoard),
            };
            if !rights.grant(color, side) {
                return Err(IllegalBoard);
            }
        }
    }
    Ok(rights)
}


fn parse_fen_enpassant_square(s: &str) -> Result<Option<Square>, IllegalBoard> {
    if s == "-" {
        Ok(None)
    } else {
        parse_square(s).map(|x| Some(x))
    }
}


#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn parse_fen_string() {
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1").is_ok());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1").is_err());
        assert!(parse_fen("nbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr1/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBN b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR/ b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNRR b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPP01PPP/RNBQKBNR b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPP91PPP/RNBQKBNR b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPP*1PPP/RNBQKBNR b KQkq e3 0 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 * 1").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 *").is_err());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b - e3 0 1").is_ok());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1").is_ok());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b Kkq e3 0 1").is_ok());
        assert!(parse_fen("rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b kq - 0 1").is_ok());
        assert!(parse_fen("k7/8/8/8/8/8/8/7K w - - 0 1").is_ok());
        assert!(parse_fen("k7/pppppppp/8/8/8/8/PPPPPPPP/7K w - - 0 1").is_ok());
        assert!(parse_fen("k7/8/8/8/7P/8/8/7K w - h3 0 1").is_err());
        assert!(parse_fen("k7/8/8/7P/8/8/8/7K b - h4 0 1").is_err());
        assert!(parse_fen("8/8/8/6k1/7P/8/8/6RK b - h3 0 1").is_ok());
        assert!(parse_fen("8/8/8/6k1/7P/8/8/7K b - h3 0 0").is_err());
    }
}