1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
//! State management for a selection in the grid.
//!
//! A selection should start when the mouse is clicked, and it should be
//! finalized when the button is released. The selection should be cleared
//! when text is added/removed/scrolled on the screen. The selection should
//! also be cleared if the user clicks off of the selection.

use std::convert::TryFrom;
use std::mem;
use std::ops::{Bound, Range, RangeBounds};

use crate::grid::Dimensions;
use crate::index::{Column, Line, Point, Side};
use crate::term::Term;

/// A Point and side within that point.
#[derive(Debug, Copy, Clone, PartialEq)]
struct Anchor {
    point: Point<usize>,
    side: Side,
}

impl Anchor {
    fn new(point: Point<usize>, side: Side) -> Anchor {
        Anchor { point, side }
    }
}

/// Represents a range of selected cells.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct SelectionRange<L = usize> {
    /// Start point, top left of the selection.
    pub start: Point<L>,
    /// End point, bottom right of the selection.
    pub end: Point<L>,
    /// Whether this selection is a block selection.
    pub is_block: bool,
}

impl<L> SelectionRange<L> {
    pub fn new(start: Point<L>, end: Point<L>, is_block: bool) -> Self {
        Self { start, end, is_block }
    }

    pub fn contains(&self, col: Column, line: L) -> bool
    where
        L: PartialEq + PartialOrd,
    {
        self.start.line <= line
            && self.end.line >= line
            && (self.start.col <= col || (self.start.line != line && !self.is_block))
            && (self.end.col >= col || (self.end.line != line && !self.is_block))
    }
}

/// Different kinds of selection.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum SelectionType {
    Simple,
    Block,
    Semantic,
    Lines,
}

/// Describes a region of a 2-dimensional area.
///
/// Used to track a text selection. There are four supported modes, each with its own constructor:
/// [`simple`], [`block`], [`semantic`], and [`lines`]. The [`simple`] mode precisely tracks which
/// cells are selected without any expansion. [`block`] will select rectangular regions.
/// [`semantic`] mode expands the initial selection to the nearest semantic escape char in either
/// direction. [`lines`] will always select entire lines.
///
/// Calls to [`update`] operate different based on the selection kind. The [`simple`] and [`block`]
/// mode do nothing special, simply track points and sides. [`semantic`] will continue to expand
/// out to semantic boundaries as the selection point changes. Similarly, [`lines`] will always
/// expand the new point to encompass entire lines.
///
/// [`simple`]: enum.Selection.html#method.simple
/// [`block`]: enum.Selection.html#method.block
/// [`semantic`]: enum.Selection.html#method.semantic
/// [`lines`]: enum.Selection.html#method.lines
/// [`update`]: enum.Selection.html#method.update
#[derive(Debug, Clone, PartialEq)]
pub struct Selection {
    pub ty: SelectionType,
    region: Range<Anchor>,
}

impl Selection {
    pub fn new(ty: SelectionType, location: Point<usize>, side: Side) -> Selection {
        Self {
            region: Range { start: Anchor::new(location, side), end: Anchor::new(location, side) },
            ty,
        }
    }

    /// Update the end of the selection.
    pub fn update(&mut self, point: Point<usize>, side: Side) {
        self.region.end = Anchor::new(point, side);
    }

    pub fn rotate<D: Dimensions>(
        mut self,
        dimensions: &D,
        range: &Range<Line>,
        delta: isize,
    ) -> Option<Selection> {
        let num_lines = dimensions.screen_lines().0;
        let num_cols = dimensions.cols().0;
        let range_bottom = range.start.0;
        let range_top = range.end.0;

        let (mut start, mut end) = (&mut self.region.start, &mut self.region.end);
        if Selection::points_need_swap(start.point, end.point) {
            mem::swap(&mut start, &mut end);
        }

        // Rotate start of selection.
        if (start.point.line < range_top || range_top == num_lines)
            && start.point.line >= range_bottom
        {
            start.point.line = usize::try_from(start.point.line as isize + delta).unwrap_or(0);

            // If end is within the same region, delete selection once start rotates out.
            if start.point.line < range_bottom && end.point.line >= range_bottom {
                return None;
            }

            // Clamp selection to start of region.
            if start.point.line >= range_top && range_top != num_lines {
                if self.ty != SelectionType::Block {
                    start.point.col = Column(0);
                    start.side = Side::Left;
                }
                start.point.line = range_top - 1;
            }
        }

        // Rotate end of selection.
        if (end.point.line < range_top || range_top == num_lines) && end.point.line >= range_bottom
        {
            end.point.line = usize::try_from(end.point.line as isize + delta).unwrap_or(0);

            // Delete selection if end has overtaken the start.
            if end.point.line > start.point.line {
                return None;
            }

            // Clamp selection to end of region.
            if end.point.line < range_bottom {
                if self.ty != SelectionType::Block {
                    end.point.col = Column(num_cols - 1);
                    end.side = Side::Right;
                }
                end.point.line = range_bottom;
            }
        }

        Some(self)
    }

    pub fn is_empty(&self) -> bool {
        match self.ty {
            SelectionType::Simple => {
                let (mut start, mut end) = (self.region.start, self.region.end);
                if Self::points_need_swap(start.point, end.point) {
                    mem::swap(&mut start, &mut end);
                }

                // Simple selection is empty when the points are identical
                // or two adjacent cells have the sides right -> left.
                start == end
                    || (start.side == Side::Right
                        && end.side == Side::Left
                        && (start.point.line == end.point.line)
                        && start.point.col + 1 == end.point.col)
            },
            SelectionType::Block => {
                let (start, end) = (self.region.start, self.region.end);

                // Block selection is empty when the points' columns and sides are identical
                // or two cells with adjacent columns have the sides right -> left,
                // regardless of their lines
                (start.point.col == end.point.col && start.side == end.side)
                    || (start.point.col + 1 == end.point.col
                        && start.side == Side::Right
                        && end.side == Side::Left)
                    || (end.point.col + 1 == start.point.col
                        && start.side == Side::Left
                        && end.side == Side::Right)
            },
            SelectionType::Semantic | SelectionType::Lines => false,
        }
    }

    /// Check whether selection contains any point in a given range.
    pub fn intersects_range<R: RangeBounds<usize>>(&self, range: R) -> bool {
        let mut start = self.region.start.point.line;
        let mut end = self.region.end.point.line;

        if Self::points_need_swap(self.region.start.point, self.region.end.point) {
            mem::swap(&mut start, &mut end);
        }

        let range_start = match range.start_bound() {
            Bound::Included(&range_start) => range_start,
            Bound::Excluded(&range_start) => range_start.saturating_add(1),
            Bound::Unbounded => 0,
        };

        let range_end = match range.end_bound() {
            Bound::Included(&range_end) => range_end,
            Bound::Excluded(&range_end) => range_end.saturating_sub(1),
            Bound::Unbounded => usize::max_value(),
        };

        range_start <= start && range_end >= end
    }

    /// Expand selection sides to include all cells.
    pub fn include_all(&mut self) {
        let (start, end) = (self.region.start.point, self.region.end.point);
        let (start_side, end_side) = match self.ty {
            SelectionType::Block
                if start.col > end.col || (start.col == end.col && start.line < end.line) =>
            {
                (Side::Right, Side::Left)
            },
            SelectionType::Block => (Side::Left, Side::Right),
            _ if Self::points_need_swap(start, end) => (Side::Right, Side::Left),
            _ => (Side::Left, Side::Right),
        };

        self.region.start.side = start_side;
        self.region.end.side = end_side;
    }

    /// Convert selection to grid coordinates.
    pub fn to_range<T>(&self, term: &Term<T>) -> Option<SelectionRange> {
        let grid = term.grid();
        let num_cols = grid.cols();

        // Order start above the end.
        let mut start = self.region.start;
        let mut end = self.region.end;

        if Self::points_need_swap(start.point, end.point) {
            mem::swap(&mut start, &mut end);
        }

        // Clamp to inside the grid buffer.
        let is_block = self.ty == SelectionType::Block;
        let (start, end) = Self::grid_clamp(start, end, is_block, grid.total_lines()).ok()?;

        match self.ty {
            SelectionType::Simple => self.range_simple(start, end, num_cols),
            SelectionType::Block => self.range_block(start, end),
            SelectionType::Semantic => Self::range_semantic(term, start.point, end.point),
            SelectionType::Lines => Self::range_lines(term, start.point, end.point),
        }
    }

    /// Bring start and end points in the correct order.
    fn points_need_swap(start: Point<usize>, end: Point<usize>) -> bool {
        start.line < end.line || start.line == end.line && start.col > end.col
    }

    /// Clamp selection inside grid to prevent OOB.
    fn grid_clamp(
        mut start: Anchor,
        end: Anchor,
        is_block: bool,
        lines: usize,
    ) -> Result<(Anchor, Anchor), ()> {
        // Clamp selection inside of grid to prevent OOB.
        if start.point.line >= lines {
            // Remove selection if it is fully out of the grid.
            if end.point.line >= lines {
                return Err(());
            }

            // Clamp to grid if it is still partially visible.
            if !is_block {
                start.side = Side::Left;
                start.point.col = Column(0);
            }
            start.point.line = lines - 1;
        }

        Ok((start, end))
    }

    fn range_semantic<T>(
        term: &Term<T>,
        mut start: Point<usize>,
        mut end: Point<usize>,
    ) -> Option<SelectionRange> {
        if start == end {
            if let Some(matching) = term.bracket_search(start) {
                if (matching.line == start.line && matching.col < start.col)
                    || (matching.line > start.line)
                {
                    start = matching;
                } else {
                    end = matching;
                }

                return Some(SelectionRange { start, end, is_block: false });
            }
        }

        start = term.semantic_search_left(start);
        end = term.semantic_search_right(end);

        Some(SelectionRange { start, end, is_block: false })
    }

    fn range_lines<T>(
        term: &Term<T>,
        mut start: Point<usize>,
        mut end: Point<usize>,
    ) -> Option<SelectionRange> {
        start = term.line_search_left(start);
        end = term.line_search_right(end);

        Some(SelectionRange { start, end, is_block: false })
    }

    fn range_simple(
        &self,
        mut start: Anchor,
        mut end: Anchor,
        num_cols: Column,
    ) -> Option<SelectionRange> {
        if self.is_empty() {
            return None;
        }

        // Remove last cell if selection ends to the left of a cell.
        if end.side == Side::Left && start.point != end.point {
            // Special case when selection ends to left of first cell.
            if end.point.col == Column(0) {
                end.point.col = num_cols - 1;
                end.point.line += 1;
            } else {
                end.point.col -= 1;
            }
        }

        // Remove first cell if selection starts at the right of a cell.
        if start.side == Side::Right && start.point != end.point {
            start.point.col += 1;

            // Wrap to next line when selection starts to the right of last column.
            if start.point.col == num_cols {
                start.point = Point::new(start.point.line.saturating_sub(1), Column(0));
            }
        }

        Some(SelectionRange { start: start.point, end: end.point, is_block: false })
    }

    fn range_block(&self, mut start: Anchor, mut end: Anchor) -> Option<SelectionRange> {
        if self.is_empty() {
            return None;
        }

        // Always go top-left -> bottom-right.
        if start.point.col > end.point.col {
            mem::swap(&mut start.side, &mut end.side);
            mem::swap(&mut start.point.col, &mut end.point.col);
        }

        // Remove last cell if selection ends to the left of a cell.
        if end.side == Side::Left && start.point != end.point && end.point.col.0 > 0 {
            end.point.col -= 1;
        }

        // Remove first cell if selection starts at the right of a cell.
        if start.side == Side::Right && start.point != end.point {
            start.point.col += 1;
        }

        Some(SelectionRange { start: start.point, end: end.point, is_block: true })
    }
}

/// Tests for selection.
///
/// There are comments on all of the tests describing the selection. Pictograms
/// are used to avoid ambiguity. Grid cells are represented by a [  ]. Only
/// cells that are completely covered are counted in a selection. Ends are
/// represented by `B` and `E` for begin and end, respectively.  A selected cell
/// looks like [XX], [BX] (at the start), [XB] (at the end), [XE] (at the end),
/// and [EX] (at the start), or [BE] for a single cell. Partially selected cells
/// look like [ B] and [E ].
#[cfg(test)]
mod tests {
    use super::*;

    use crate::config::MockConfig;
    use crate::event::{Event, EventListener};
    use crate::index::{Column, Line, Point, Side};
    use crate::term::{SizeInfo, Term};

    struct Mock;
    impl EventListener for Mock {
        fn send_event(&self, _event: Event) {}
    }

    fn term(height: usize, width: usize) -> Term<Mock> {
        let size = SizeInfo {
            width: width as f32,
            height: height as f32,
            cell_width: 1.0,
            cell_height: 1.0,
            padding_x: 0.0,
            padding_y: 0.0,
            dpr: 1.0,
        };
        Term::new(&MockConfig::default(), &size, Mock)
    }

    /// Test case of single cell selection.
    ///
    /// 1. [  ]
    /// 2. [B ]
    /// 3. [BE]
    #[test]
    fn single_cell_left_to_right() {
        let location = Point { line: 0, col: Column(0) };
        let mut selection = Selection::new(SelectionType::Simple, location, Side::Left);
        selection.update(location, Side::Right);

        assert_eq!(selection.to_range(&term(1, 1)).unwrap(), SelectionRange {
            start: location,
            end: location,
            is_block: false
        });
    }

    /// Test case of single cell selection.
    ///
    /// 1. [  ]
    /// 2. [ B]
    /// 3. [EB]
    #[test]
    fn single_cell_right_to_left() {
        let location = Point { line: 0, col: Column(0) };
        let mut selection = Selection::new(SelectionType::Simple, location, Side::Right);
        selection.update(location, Side::Left);

        assert_eq!(selection.to_range(&term(1, 1)).unwrap(), SelectionRange {
            start: location,
            end: location,
            is_block: false
        });
    }

    /// Test adjacent cell selection from left to right.
    ///
    /// 1. [  ][  ]
    /// 2. [ B][  ]
    /// 3. [ B][E ]
    #[test]
    fn between_adjacent_cells_left_to_right() {
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(0, Column(0)), Side::Right);
        selection.update(Point::new(0, Column(1)), Side::Left);

        assert_eq!(selection.to_range(&term(1, 2)), None);
    }

    /// Test adjacent cell selection from right to left.
    ///
    /// 1. [  ][  ]
    /// 2. [  ][B ]
    /// 3. [ E][B ]
    #[test]
    fn between_adjacent_cells_right_to_left() {
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(0, Column(1)), Side::Left);
        selection.update(Point::new(0, Column(0)), Side::Right);

        assert_eq!(selection.to_range(&term(1, 2)), None);
    }

    /// Test selection across adjacent lines.
    ///
    /// 1.  [  ][  ][  ][  ][  ]
    ///     [  ][  ][  ][  ][  ]
    /// 2.  [  ][ B][  ][  ][  ]
    ///     [  ][  ][  ][  ][  ]
    /// 3.  [  ][ B][XX][XX][XX]
    ///     [XX][XE][  ][  ][  ]
    #[test]
    fn across_adjacent_lines_upward_final_cell_exclusive() {
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(1, Column(1)), Side::Right);
        selection.update(Point::new(0, Column(1)), Side::Right);

        assert_eq!(selection.to_range(&term(2, 5)).unwrap(), SelectionRange {
            start: Point::new(1, Column(2)),
            end: Point::new(0, Column(1)),
            is_block: false,
        });
    }

    /// Test selection across adjacent lines.
    ///
    /// 1.  [  ][  ][  ][  ][  ]
    ///     [  ][  ][  ][  ][  ]
    /// 2.  [  ][  ][  ][  ][  ]
    ///     [  ][ B][  ][  ][  ]
    /// 3.  [  ][ E][XX][XX][XX]
    ///     [XX][XB][  ][  ][  ]
    /// 4.  [ E][XX][XX][XX][XX]
    ///     [XX][XB][  ][  ][  ]
    #[test]
    fn selection_bigger_then_smaller() {
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(0, Column(1)), Side::Right);
        selection.update(Point::new(1, Column(1)), Side::Right);
        selection.update(Point::new(1, Column(0)), Side::Right);

        assert_eq!(selection.to_range(&term(2, 5)).unwrap(), SelectionRange {
            start: Point::new(1, Column(1)),
            end: Point::new(0, Column(1)),
            is_block: false,
        });
    }

    #[test]
    fn line_selection() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Lines, Point::new(0, Column(1)), Side::Left);
        selection.update(Point::new(5, Column(1)), Side::Right);
        selection = selection.rotate(&size, &(Line(0)..size.0), 7).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(9, Column(0)),
            end: Point::new(7, Column(4)),
            is_block: false,
        });
    }

    #[test]
    fn semantic_selection() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Semantic, Point::new(0, Column(3)), Side::Left);
        selection.update(Point::new(5, Column(1)), Side::Right);
        selection = selection.rotate(&size, &(Line(0)..size.0), 7).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(9, Column(0)),
            end: Point::new(7, Column(3)),
            is_block: false,
        });
    }

    #[test]
    fn simple_selection() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(0, Column(3)), Side::Right);
        selection.update(Point::new(5, Column(1)), Side::Right);
        selection = selection.rotate(&size, &(Line(0)..size.0), 7).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(9, Column(0)),
            end: Point::new(7, Column(3)),
            is_block: false,
        });
    }

    #[test]
    fn block_selection() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Block, Point::new(0, Column(3)), Side::Right);
        selection.update(Point::new(5, Column(1)), Side::Right);
        selection = selection.rotate(&size, &(Line(0)..size.0), 7).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(9, Column(2)),
            end: Point::new(7, Column(3)),
            is_block: true
        });
    }

    #[test]
    fn simple_is_empty() {
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(0, Column(0)), Side::Right);
        assert!(selection.is_empty());
        selection.update(Point::new(0, Column(1)), Side::Left);
        assert!(selection.is_empty());
        selection.update(Point::new(1, Column(0)), Side::Right);
        assert!(!selection.is_empty());
    }

    #[test]
    fn block_is_empty() {
        let mut selection =
            Selection::new(SelectionType::Block, Point::new(0, Column(0)), Side::Right);
        assert!(selection.is_empty());
        selection.update(Point::new(0, Column(1)), Side::Left);
        assert!(selection.is_empty());
        selection.update(Point::new(0, Column(1)), Side::Right);
        assert!(!selection.is_empty());
        selection.update(Point::new(1, Column(0)), Side::Right);
        assert!(selection.is_empty());
        selection.update(Point::new(1, Column(1)), Side::Left);
        assert!(selection.is_empty());
        selection.update(Point::new(1, Column(1)), Side::Right);
        assert!(!selection.is_empty());
    }

    #[test]
    fn rotate_in_region_up() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(2, Column(3)), Side::Right);
        selection.update(Point::new(5, Column(1)), Side::Right);
        selection = selection.rotate(&size, &(Line(1)..(size.0 - 1)), 4).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(8, Column(0)),
            end: Point::new(6, Column(3)),
            is_block: false,
        });
    }

    #[test]
    fn rotate_in_region_down() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Simple, Point::new(5, Column(3)), Side::Right);
        selection.update(Point::new(8, Column(1)), Side::Left);
        selection = selection.rotate(&size, &(Line(1)..(size.0 - 1)), -5).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(3, Column(1)),
            end: Point::new(1, size.1 - 1),
            is_block: false,
        });
    }

    #[test]
    fn rotate_in_region_up_block() {
        let size = (Line(10), Column(5));
        let mut selection =
            Selection::new(SelectionType::Block, Point::new(2, Column(3)), Side::Right);
        selection.update(Point::new(5, Column(1)), Side::Right);
        selection = selection.rotate(&size, &(Line(1)..(size.0 - 1)), 4).unwrap();

        assert_eq!(selection.to_range(&term(*size.0, *size.1)).unwrap(), SelectionRange {
            start: Point::new(8, Column(2)),
            end: Point::new(6, Column(3)),
            is_block: true,
        });
    }

    #[test]
    fn range_intersection() {
        let mut selection =
            Selection::new(SelectionType::Lines, Point::new(6, Column(1)), Side::Left);
        selection.update(Point::new(3, Column(1)), Side::Right);

        assert!(selection.intersects_range(..));
        assert!(selection.intersects_range(2..));
        assert!(selection.intersects_range(2..=4));
        assert!(selection.intersects_range(2..=7));
        assert!(selection.intersects_range(4..=5));
        assert!(selection.intersects_range(5..8));

        assert!(!selection.intersects_range(..=2));
        assert!(!selection.intersects_range(7..=8));
    }
}