aimds-analysis - AI Manipulation Defense System Analysis Layer
Behavioral analysis and formal verification for AI threat detection - Temporal pattern analysis, LTL policy checking, and anomaly detection with sub-520ms latency.
Part of the AIMDS (AI Manipulation Defense System) by rUv - Production-ready adversarial defense for AI systems.
Features
- 🧠 Behavioral Analysis: Temporal pattern analysis via attractor classification (<100ms)
- 🔒 Formal Verification: LTL policy checking with theorem proving (<500ms)
- 📊 Anomaly Detection: Statistical baseline learning with multi-dimensional analysis
- ⚡ High Performance: <520ms combined deep-path latency (validated)
- 🎯 Production Ready: 100% test coverage (27/27), zero unsafe code
- 🔗 Midstream Integration: Uses temporal-attractor-studio, temporal-neural-solver
Quick Start
use ;
use AnalysisEngine;
async
Installation
Add to your Cargo.toml:
[]
= "0.1.0"
Performance
Validated Benchmarks
| Component | Target | Actual | Status |
|---|---|---|---|
| Behavioral Analysis | <100ms | ~80ms | ✅ |
| Policy Verification | <500ms | ~420ms | ✅ |
| Combined Deep Path | <520ms | ~500ms | ✅ |
| Anomaly Detection | <50ms | ~35ms | ✅ |
| Baseline Training | <1s | ~850ms | ✅ |
Benchmarks run on 4-core Intel Xeon, 16GB RAM. See ../../RUST_TEST_REPORT.md for details.
Performance Characteristics
- Behavioral Analysis: ~79,123 ns/iter (80ms for complex sequences)
- Policy Verification: ~418,901 ns/iter (420ms for complex LTL formulas)
- Memory Usage: <200MB baseline, <1GB with full baseline data
- Throughput: >500 requests/second for deep-path analysis
Architecture
┌──────────────────────────────────────────────────────┐
│ aimds-analysis │
├──────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ │
│ │ Behavioral │ │ Policy │ │
│ │ Analyzer │ │ Verifier │ │
│ └──────────────┘ └──────────────┘ │
│ │ │ │
│ └──────────┬─────────┘ │
│ │ │
│ ┌───────▼────────┐ │
│ │ Analysis │ │
│ │ Engine │ │
│ └───────┬────────┘ │
│ │ │
│ ┌──────────┴──────────┐ │
│ │ │ │
│ ┌──────▼─────┐ ┌───────▼──────┐ │
│ │ Attractor │ │ Temporal │ │
│ │ Studio │ │ Neural │ │
│ └────────────┘ └──────────────┘ │
│ │
│ Midstream Platform Integration │
│ │
└──────────────────────────────────────────────────────┘
Analysis Capabilities
Behavioral Analysis
Temporal Attractor Classification:
- Fixed Point: Stable behavior, low anomaly risk
- Limit Cycle: Periodic patterns, normal operation
- Strange Attractor: Chaotic behavior, potential threat
- Divergent: Unstable patterns, high anomaly risk
Lyapunov Exponent Calculation:
let result = analyzer.analyze.await?;
match result.lyapunov_exponent
Baseline Learning:
// Train baseline on normal behavior
analyzer.train_baseline.await?;
// Detect deviations
let result = analyzer.analyze.await?;
if result.anomaly_score > 0.8
Policy Verification
Linear Temporal Logic (LTL):
Supports standard LTL operators:
- Globally (G): Property must hold always
- Finally (F): Property must hold eventually
- Next (X): Property must hold in next state
- Until (U): Property holds until another holds
Policy Examples:
use ;
let verifier = new;
// "Users must always be authenticated"
let auth_policy = new;
// "PII must eventually be redacted"
let pii_policy = new;
verifier.add_policy;
verifier.add_policy;
let result = verifier.verify.await?;
for violation in result.violations
Anomaly Detection
Multi-Dimensional Analysis:
// Analyze sequence with multiple features
let sequence = vec!;
let result = analyzer.analyze_sequence.await?;
println!;
Statistical Metrics:
- Mean deviation from baseline
- Standard deviation analysis
- Distribution fitting (Gaussian, Student-t)
- Outlier detection (IQR, Z-score)
Usage Examples
Full Analysis Pipeline
use AnalysisEngine;
use ;
let analyzer = new.await?;
// Behavioral + Policy verification
let input = new;
let detection = detector.detect.await?;
let result = analyzer.analyze.await?;
println!;
println!;
println!;
println!;
Baseline Training
// Collect normal behavior samples
let normal_sequences = vec!;
// Train baseline
analyzer.train_baseline.await?;
// Now analyze new inputs against baseline
let result = analyzer.analyze.await?;
LTL Policy Checking
use ;
let mut verifier = new;
// Add security policies
verifier.add_policy;
verifier.add_policy;
// Verify trace
let trace = vec!;
let result = verifier.verify.await?;
for violation in result.violations
Threshold Adjustment
// Adjust sensitivity based on environment
analyzer.update_threshold.await?; // More sensitive
// Or per-analysis
let result = analyzer.analyze_with_threshold.await?;
Configuration
Environment Variables
# Behavioral analysis
AIMDS_BEHAVIORAL_ANALYSIS_ENABLED=true
AIMDS_BEHAVIORAL_THRESHOLD=0.75
AIMDS_BASELINE_MIN_SAMPLES=100
# Policy verification
AIMDS_POLICY_VERIFICATION_ENABLED=true
AIMDS_POLICY_TIMEOUT_MS=500
AIMDS_POLICY_STRICT_MODE=true
# Performance tuning
AIMDS_ANALYSIS_TIMEOUT_MS=520
AIMDS_MAX_SEQUENCE_LENGTH=10000
Programmatic Configuration
let config = Config ;
let analyzer = new.await?;
Integration with Midstream Platform
The analysis layer uses production-validated Midstream crates:
- temporal-attractor-studio: Chaos analysis, Lyapunov exponents, attractor classification
- temporal-neural-solver: Neural ODE solving for temporal verification
- strange-loop: Meta-learning for pattern optimization
All integrations use 100% real APIs (no mocks) with validated performance.
Testing
Run tests:
# Unit tests
# Integration tests
# Benchmarks
Test Coverage: 100% (27/27 tests passing)
Example tests:
- Behavioral analysis accuracy
- LTL formula parsing and verification
- Baseline training and detection
- Policy enable/disable functionality
- Performance validation (<520ms target)
Monitoring
Metrics
Prometheus metrics exposed:
// Analysis metrics
aimds_analysis_requests_total
aimds_analysis_latency_ms
aimds_anomaly_score_distribution
aimds_policy_violations_total
// Performance metrics
aimds_baseline_training_time_ms
aimds_attractor_classification_latency_ms
aimds_ltl_verification_latency_ms
Tracing
Structured logs with tracing:
info!;
Use Cases
Multi-Agent Coordination
Detect anomalous agent behavior:
// Analyze agent action sequences
let agent_trace = vec!;
let result = analyzer.analyze_sequence.await?;
if result.anomaly_score > 0.8
API Gateway Security
Enforce rate limits and access policies:
// Define policies
verifier.add_policy;
// Verify each request
let result = verifier.verify.await?;
if !result.violations.is_empty
Fraud Detection
Identify unusual transaction patterns:
// Train on normal transactions
analyzer.train_baseline.await?;
// Analyze new transaction
let result = analyzer.analyze.await?;
if result.anomaly_score > 0.9
Documentation
- API Docs: https://docs.rs/aimds-analysis
- Examples: ../../examples/
- Benchmarks: ../../benches/
- Test Report: ../../RUST_TEST_REPORT.md
Contributing
See CONTRIBUTING.md for guidelines.
License
MIT OR Apache-2.0
Related Projects
- AIMDS - Main AIMDS platform
- aimds-core - Core types and configuration
- aimds-detection - Real-time threat detection
- aimds-response - Adaptive mitigation
- Midstream Platform - Core temporal analysis
Support
- Website: https://ruv.io/aimds
- Docs: https://ruv.io/aimds/docs
- GitHub: https://github.com/agenticsorg/midstream/tree/main/AIMDS/crates/aimds-analysis
- Discord: https://discord.gg/ruv