1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
use crate::Group;

use std::io::{self, Write};

use ages_prs::ModernPrsEncoder;
use ascii::{AsciiStr, AsciiString};
use block_modes::{BlockMode, Ecb};
use block_modes::block_padding::NoPadding;
use blowfish::BlowfishLE;
use blowfish::block_cipher::NewBlockCipher;
use byteorder::{LittleEndian as LE, WriteBytesExt};
use rand::Rng;
use thiserror::Error;
use zerocopy::AsBytes;

/// Type for writing an ICE archive.
pub struct IceWriter {
    files: [Vec<FileEntry>; 2],
    version: u32,
    compress: bool,
    encrypt: bool,
    oodle: bool,
}

struct FileEntry {
    ext: AsciiString,
    name: AsciiString,
    buf: Vec<u8>,
}

impl FileEntry {
    fn write_file<W: Write>(&self, mut out: W) -> io::Result<usize> {
        let mut padding_bytes = 16 - self.buf.len() % 16;
        if padding_bytes == 16 { padding_bytes = 0; }

        out.write_all(self.ext.as_bytes())?;
        if self.ext.len() % 4 != 0 {
            for _ in std::iter::repeat(0).take(4 - self.ext.len() % 4) {
                out.write_u8(0)?;
            }
        }
        let name_length = self.name.len() + 1;
        let name_length_padded = name_length + (16 - name_length % 16);
        let padded_size = self.buf.len() + padding_bytes + 0x40 + name_length_padded;
        out.write_u32::<LE>(padded_size as u32)?;
        out.write_u32::<LE>(self.buf.len() as u32)?;
        out.write_u32::<LE>(0x40 + name_length_padded as u32)?;
        out.write_u32::<LE>(name_length as u32)?;
        for _ in std::iter::repeat(0).take(44) {
            out.write_u8(0)?;
        }
        out.write_all(self.name.as_bytes())?;
        for _ in std::iter::repeat(0).take(name_length_padded - self.name.len()) {
            out.write_u8(0)?;
        }
        out.write_all(&self.buf[..])?;
        for _ in std::iter::repeat(0).take(padding_bytes) {
            out.write_u8(0)?;
        }
        Ok(padded_size)
    }
}

/// Error indicating that the provided ICE version is unsupported by this
/// implementation.
#[derive(Clone, Copy, Debug)]
pub struct UnsupportedVersion(u32);
impl ::std::fmt::Display for UnsupportedVersion {
    fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
        f.write_fmt(format_args!("Unsupported ICE version {}", self.0))
    }
}
impl ::std::error::Error for UnsupportedVersion {}

#[derive(Debug, Error)]
#[non_exhaustive]
pub enum CompressError {
    #[error("Oodle compressor error (result {0})")]
    Oodle(i32),

    #[error("Oodle Kraken compression is unsupported in this build")]
    OodleUnsupported,

    #[error("PRS compressor error")]
    Prs(io::Error),
}

#[cfg(all(feature = "oodle", any(target_os = "linux", target_os = "windows")))]
fn compress_oodle(data: &[u8]) -> Result<Vec<u8>, CompressError> {
    let mut out = vec![0u8; data.len() + 4096];
    unsafe {
        let result = crate::ooz_sys::Compress(
            crate::ooz_sys::Compressor::Kraken,
            data.as_ptr(),
            out.as_mut_ptr(),
            data.len() as i32,
            crate::ooz_sys::CompressorLevel::Normal,
            std::ptr::null(),
            std::ptr::null(),
            std::ptr::null(),
        );
        if result <= 0 {
            return Err(CompressError::Oodle(result));
        }
        out.truncate(result as usize);
    }
    Ok(out)
}

#[cfg(not(all(feature = "oodle", any(target_os = "linux", target_os = "windows"))))]
fn compress_oodle(data: &[u8]) -> Result<Vec<u8>, CompressError> {
    Err(CompressError::OodleUnsupported)
}

#[derive(Debug, Error)]
#[non_exhaustive]
pub enum IceWriterError {
    #[error("Compression error in {group}")]
    GroupCompressError {
        group: Group,
        source: CompressError,
    },

    #[error("IO error")]
    Io {
        #[from]
        source: io::Error,
    }
}

impl IceWriter {
    /// Begin a new ICE archive.
    pub fn new(version: u32, compress: bool, encrypt: bool, oodle: bool) -> Result<IceWriter, UnsupportedVersion> {
        if !(3..=4).contains(&version) {
            return Err(UnsupportedVersion(version));
        }

        Ok(IceWriter {
            version,
            compress,
            encrypt,
            oodle,
            files: Default::default(),
        })
    }

    /// Begin a file.
    ///
    /// The `finish` method must be called on the file writer to add the file to
    /// the archive.
    pub fn begin_file<'a>(&'a mut self, name: &AsciiStr, ext: &AsciiStr, group: Group) -> IceFileWriter<'a> {
        IceFileWriter {
            writer: self,
            name: name.to_owned(),
            ext: ext.to_owned(),
            group,
            buf: Vec::with_capacity(1024),
        }
    }

    /// Write the composed ICE archive into the given sink.
    pub fn finish<W: Write>(&self, mut sink: W) -> Result<(), IceWriterError> {
        assert!((3..=9).contains(&self.version));

        let filecount1 = self.files[0].len();
        let filecount2 = self.files[1].len();

        let summed_g1 = self.files[0].iter().map(|f| f.buf.len() + 0x50).sum();
        let summed_g2 = self.files[1].iter().map(|f| f.buf.len() + 0x50).sum();

        let mut g1 = Vec::with_capacity(summed_g1);
        let mut g2 = Vec::with_capacity(summed_g2);

        for f in self.files[0].iter() {
            f.write_file(&mut g1)?;
        }

        for f in self.files[1].iter() {
            f.write_file(&mut g2)?;
        }

        let mut comp1: Vec<u8>;
        let mut comp2: Vec<u8>;

        // g1/g2 should be zero-padded, but we know this implementation is
        // always 16 byte aligned when writing files. SEGA's sometimes doesn't!
        let uncompressed_size1 = g1.len();
        let compressed_size1;
        let uncompressed_size2 = g2.len();
        let compressed_size2;

        // sega?    hello?
        let shuffled_uncompressed_size1;
        let shuffled_uncompressed_size2;
        /*
        if self.compress && self.version > 3 {
            shuffled_uncompressed_size1 = uncompressed_size1 - if uncompressed_size2 > 0 {
                2
            } else {
                4
            };
            shuffled_uncompressed_size2 = uncompressed_size2 - if uncompressed_size1 > 0 {
                5
            } else {
                3
            };
        } else {
            shuffled_uncompressed_size1 = 0;
            shuffled_uncompressed_size2 = 0;
        }
        */
        shuffled_uncompressed_size1 = uncompressed_size1;
        shuffled_uncompressed_size2 = uncompressed_size2;

        if self.compress {
            let comp1_len: usize;
            let comp2_len: usize;
            if self.oodle {
                if g1.len() > 0 {
                    let ncomp1 = compress_oodle(&g1[..])
                        .map_err(|e| IceWriterError::GroupCompressError {
                            group: Group::Group1,
                            source: e,
                        })?;
                    comp1_len = ncomp1.len();
                    comp1 = ncomp1;
                } else {
                    comp1_len = 0;
                    comp1 = Vec::new();
                }
                if g2.len() > 0 {
                    let ncomp2 = compress_oodle(&g2[..])
                        .map_err(|e| IceWriterError::GroupCompressError {
                            group: Group::Group2,
                            source: e,
                        })?;
                    comp2_len = ncomp2.len();
                    comp2 = ncomp2;
                } else {
                    comp2_len = 0;
                    comp2 = Vec::new();
                }
            } else {
                let mut ncomp1 = Vec::with_capacity(g1.len() / 2);
                let mut ncomp2 = Vec::with_capacity(g2.len() / 2);
                if g1.len() > 0 {
                    let mut encoder = ModernPrsEncoder::new(&mut ncomp1);
                    encoder.write_all(&g1[..])
                        .map_err(|e| IceWriterError::GroupCompressError {
                            group: Group::Group1,
                            source: CompressError::Prs(e),
                        })?;

                    match encoder.into_inner() {
                        Ok(_) => {},
                        Err(_) => {
                            return Err(IceWriterError::GroupCompressError {
                                group: Group::Group1,
                                source: CompressError::Prs(
                                    io::Error::new(
                                        io::ErrorKind::Other,
                                        "failed to finalize PRS stream",
                                    ),
                                ),
                            });
                        },
                    }
                }
                if g2.len() > 0 {
                    let mut encoder = ModernPrsEncoder::new(&mut ncomp2);
                    encoder.write_all(&g2[..])
                        .map_err(|e| IceWriterError::GroupCompressError {
                            group: Group::Group2,
                            source: CompressError::Prs(e),
                        })?;

                    match encoder.into_inner() {
                        Ok(_) => {},
                        Err(_) => {
                            return Err(IceWriterError::GroupCompressError {
                                group: Group::Group2,
                                source: CompressError::Prs(
                                    io::Error::new(
                                        io::ErrorKind::Other,
                                        "failed to finalize PRS stream",
                                    ),
                                ),
                            });
                        },
                    }
                }

                // Needs to be padded for writing, regardless of encrypt flag
                ncomp1.resize((ncomp1.len() + 7) & !7, 0);
                ncomp2.resize((ncomp2.len() + 7) & !7, 0);

                for b in ncomp1.iter_mut().chain(ncomp2.iter_mut()) {
                    *b ^= 0x95;
                }
                comp1_len = ncomp1.len();
                comp1 = ncomp1;
                comp2_len = ncomp2.len();
                comp2 = ncomp2;
            }

            compressed_size1 = comp1_len;
            compressed_size2 = comp2_len;
        } else {
            // uncompressed
            compressed_size1 = 0;
            compressed_size2 = 0;

            comp1 = g1;
            comp2 = g2;
        }

        // encryption is based on chosen version
        if self.version == 3 {
            // v3 encryption
            // use 1 key for both groups
            // header is unencrypted
            // let source_key: u32;
            let source_key: u32 = rand::random();

            // let key: u32 = if shuffled_uncompressed_size1 > 0 {
            //     source_key = 0;
            //     (shuffled_uncompressed_size1 as u32).swap_bytes()
            // } else {
            //     source_key = rand::random();
            //     (uncompressed_size1 as u32)
            //         ^ (uncompressed_size2 as u32)
            //         ^ (shuffled_uncompressed_size2 as u32)
            //         ^ source_key
            //         ^ 0xC8D7469Au32
            // };
            let key: u32 = (uncompressed_size1 as u32)
                ^ (uncompressed_size2 as u32)
                ^ (shuffled_uncompressed_size2 as u32)
                ^ source_key
                ^ 0xC8D7469Au32;

            // let key = uncompressed_size1 as u32 ^ uncompressed_size2 as u32 ^ 0u32 ^ source_key ^ 0xC8D7469Au32;

            if self.encrypt {
                let blowfish: Ecb<BlowfishLE, NoPadding> = Ecb::new(BlowfishLE::new_varkey(&key.to_le_bytes()[..]).unwrap(), &Default::default());
                let comp1_encrypt_size = (comp1.len() / 8) * 8;
                let comp2_encrypt_size = (comp2.len() / 8) * 8;
                blowfish.encrypt(&mut comp1[..comp1_encrypt_size], comp1_encrypt_size).unwrap();
                let blowfish: Ecb<BlowfishLE, NoPadding> = Ecb::new(BlowfishLE::new_varkey(&key.to_le_bytes()[..]).unwrap(), &Default::default());
                blowfish.encrypt(&mut comp2[..comp2_encrypt_size], comp2_encrypt_size).unwrap();
            }

            let crcg1 = if comp1.len() > 0 { crc::crc32::checksum_ieee(&comp1[..]) } else { 0 };
            let crcg2 = if comp2.len() > 0 { crc::crc32::checksum_ieee(&comp2[..]) } else { 0 };

            let mut header = crate::read::IceHeader::default();
            header.magic[..].copy_from_slice(b"ICE\0");
            header.reserved1.set(0);
            header.version.set(self.version);
            header.reserved2.set(0x80);

            let mut gh = crate::read::IceGroupHeaders::default();
            gh.groups[0].size.set(uncompressed_size1 as u32);
            gh.groups[0].compressed_size.set(compressed_size1 as u32);
            gh.groups[0].file_count.set(filecount1 as u32);
            gh.groups[0].crc32.set(crcg1);
            gh.groups[1].size.set(uncompressed_size2 as u32);
            gh.groups[1].compressed_size.set(compressed_size2 as u32);
            gh.groups[1].file_count.set(filecount2 as u32);
            gh.groups[1].crc32.set(crcg2);

            if self.compress && !self.oodle {
                gh.group1_shuffled_size.set(shuffled_uncompressed_size1 as u32);
                gh.group2_shuffled_size.set(shuffled_uncompressed_size2 as u32);
            } else {
                gh.group1_shuffled_size.set(0);
                gh.group2_shuffled_size.set(0);
            }

            if self.encrypt {
                gh.key.set(source_key);
            } else {
                gh.key.set(0);
            }


            // write IceInfo
            let mut info = crate::read::IceInfo::default();
            info.r1.set(0xFF);
            let mut flags: u32 = 0;
            if self.encrypt {
                flags |= 0x1;
            }
            if self.oodle {
                flags |= 0x8;
            }
            info.flags.set(flags);
            // info.size.set((
            //     std::mem::size_of::<crate::read::IceHeader>()
            //     + std::mem::size_of::<crate::read::IceInfo>()
            //     + std::mem::size_of::<crate::read::IceGroupHeaders>()
            //     + comp1.len()
            //     + comp2.len()
            // ) as u32);
            info.size.set(0);

            // evaluate CRC32 of the archive
            let crc = {
                use crc::Hasher32;
                let mut c = crc::crc32::Digest::new_with_initial(crc::crc32::IEEE, crc::crc32::checksum_ieee(&comp1[..]));
                c.write(&comp2[..]);
                c.sum32()
            };
            info.crc32.set(crc);

            sink.write_all(header.as_bytes())?;
            sink.write_all(gh.as_bytes())?;
            sink.write_all(info.as_bytes())?;
            sink.write_all(&[0u8; 0x30])?;
            sink.write_all(&comp1[..])?;
            sink.write_all(&comp2[..])?;

            Ok(())
        } else {
            // v4-9 encryption

            // write IceHeader
            let mut header = crate::read::IceHeader::default();
            header.magic[..].copy_from_slice(b"ICE\0");
            header.reserved1.set(0);
            header.version.set(self.version);
            header.reserved2.set(0x80);

            let mut info = crate::read::IceInfo::default();
            info.r1.set(0xFF);
            let mut flags: u32= 0;
            if self.encrypt {
                flags |= 0x1;
            }
            if self.oodle {
                flags |= 0x8;
            }
            info.flags.set(flags);
            info.size.set((
                std::mem::size_of::<crate::read::IceHeader>()
                + std::mem::size_of::<crate::read::IceInfo>()
                + 0x100
                + std::mem::size_of::<crate::read::IceGroupHeaders>()
                + comp1.len()
                + comp2.len()
                + if self.version > 4 { 0x10 } else { 0 }
            ) as u32);

            let mut table: [u8; 0x100] = [0; 0x100];
            if self.encrypt {
                rand::thread_rng().fill(&mut table[..]);
            }

            // generate keys
            let key1 = crate::read::get_key1(info.size.get(), &table, self.version);
            let key2 = crate::read::get_key2(key1, &table, self.version);
            let key3 = crate::read::get_key3(key2, &table, self.version);
            let gh_key = key3.rotate_left(crate::read::LIST13[self.version as usize - 4]).to_le_bytes();
            let g1_key1 = key3;
            let g1_key2 = crate::read::get_key2(key3, &table, self.version);
            let g2_key1 = g1_key1.rotate_left(crate::read::LIST17[self.version as usize - 4]);
            let g2_key2 = g1_key2.rotate_left(crate::read::LIST17[self.version as usize - 4]);

            // evaluate CRC32 of the archive
            let crc = {
                use crc::Hasher32;
                let mut c = crc::crc32::Digest::new_with_initial(crc::crc32::IEEE, crc::crc32::checksum_ieee(&comp1[..]));
                c.write(&comp2[..]);
                c.sum32()
            };

            if self.encrypt {
                encrypt_v4(&mut comp1[..], self.version, g1_key1, g1_key2);
                encrypt_v4(&mut comp2[..], self.version, g2_key1, g2_key2);
            }

            info.crc32.set(crc);

            let crcg1 = if comp1.len() > 0 { crc::crc32::checksum_ieee(&comp1[..]) } else { 0 };
            let crcg2 = if comp2.len() > 0 { crc::crc32::checksum_ieee(&comp2[..]) } else { 0 };

            let mut gh = crate::read::IceGroupHeaders::default();
            gh.groups[0].size.set(uncompressed_size1 as u32);
            gh.groups[0].compressed_size.set(compressed_size1 as u32);
            gh.groups[0].file_count.set(filecount1 as u32);
            gh.groups[0].crc32.set(crcg1);
            gh.groups[1].size.set(uncompressed_size2 as u32);
            gh.groups[1].compressed_size.set(compressed_size2 as u32);
            gh.groups[1].file_count.set(filecount2 as u32);
            gh.groups[1].crc32.set(crcg2);
            if self.compress && !self.oodle {
                gh.group1_shuffled_size.set(shuffled_uncompressed_size1 as u32);
                gh.group2_shuffled_size.set(shuffled_uncompressed_size2 as u32);
            } else {
                gh.group1_shuffled_size.set(0);
                gh.group2_shuffled_size.set(0);
            }

            // key is unset in v4-9
            if self.encrypt {
                let blowfish: Ecb<BlowfishLE, NoPadding> = Ecb::new(BlowfishLE::new_varkey(&gh_key[..]).unwrap(), &Default::default());
                blowfish.encrypt(gh.as_bytes_mut(), std::mem::size_of::<crate::read::IceGroupHeaders>()).unwrap();
            }

            // write remaining stuff
            sink.write_all(header.as_bytes())?;
            sink.write_all(info.as_bytes())?;
            if self.version > 4 {
                sink.write_all(&[0u8; 0x10])?;
            }

            sink.write_all(&table[..])?;
            sink.write_all(gh.as_bytes())?;
            sink.write_all(&comp1[..])?;
            sink.write_all(&comp2[..])?;

            Ok(())
        }
    }
}

fn encrypt_v4(buf: &mut [u8], version: u32, key1: u32, key2: u32) {
    assert!((4..=9).contains(&version));
    let size = buf.len();

    if size == 0 {
        return;
    }

    if (version < 5 && size <= 0x19000) || (version >= 5 && size <= 0x25800) {
        let blowfish: Ecb<BlowfishLE, NoPadding> = Ecb::new(BlowfishLE::new_varkey(&key2.to_le_bytes()[..]).unwrap(), &Default::default());
        let enc_size = (size / 8) * 8;
        blowfish.encrypt(&mut buf[..enc_size], enc_size).unwrap();
    }
    let blowfish: Ecb<BlowfishLE, NoPadding> = Ecb::new(BlowfishLE::new_varkey(&key1.to_le_bytes()[..]).unwrap(), &Default::default());
    let enc_size = (size / 8) * 8;
    blowfish.encrypt(&mut buf[..enc_size], enc_size).unwrap();

    let shift = if version < 5 { 16 } else { version + 5 };
    let xorbyte = ((key1 ^ (key1 >> shift)) & 0xFF) as u8;
    for b in buf[..].iter_mut() {
        if *b != 0 && *b != xorbyte {
            *b = *b & 0xFF ^ xorbyte;
        }
    }
}

/// An IO sink for writing bytes to a file before completing its insertion into
/// an in-progress ICE group.
pub struct IceFileWriter<'a> {
    writer: &'a mut IceWriter,
    group: Group,
    ext: AsciiString,
    name: AsciiString,
    buf: Vec<u8>,
}

impl<'a> IceFileWriter<'a> {
    /// Consume this writer, adding the file to the referenced IceWriter.
    pub fn finish(self) {
        let IceFileWriter {
            writer,
            group,
            ext,
            name,
            buf,
        } = self;

        let files = match group {
            Group::Group1 => &mut writer.files[0],
            Group::Group2 => &mut writer.files[1],
        };

        files.push(FileEntry {
            ext,
            name,
            buf,
        });
    }
}

impl<'a> Write for IceFileWriter<'a> {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.buf.write(buf)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.buf.flush()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::read::{IceArchive, IceGroupIter};

    use std::io::Cursor;

    fn test(version: u32) -> Vec<u8> {
        let mut fw = IceWriter::new(version, true, true, false).unwrap();
        {
            let mut f = fw.begin_file(AsciiStr::from_ascii("hello1.txt").unwrap(), AsciiStr::from_ascii("txt").unwrap(), Group::Group1);
            f.write_all(b"hello world").unwrap();
            f.finish();
        }
        {
            let mut f = fw.begin_file(AsciiStr::from_ascii("hello2.txt").unwrap(), AsciiStr::from_ascii("txt").unwrap(), Group::Group2);
            f.write_all(b"hello world").unwrap();
            f.finish();
        }
        let mut fb = Vec::new();
        fw.finish(&mut fb).unwrap();
        let ia = IceArchive::load(Cursor::new(&fb)).unwrap();
        println!("Group 1:");
        let g1_count = ia.group_count(Group::Group1);
        let g1_data = ia.decompress_group(Group::Group1).unwrap();
        let g1_iter = IceGroupIter::new(&g1_data[..], g1_count).unwrap();
        for f in g1_iter {
            println!("\t{}", f.name().unwrap());
        }
        println!("Group 2:");
        let g2_count = ia.group_count(Group::Group2);
        let g2_data = ia.decompress_group(Group::Group2).unwrap();
        let g2_iter = IceGroupIter::new(&g2_data[..], g2_count).unwrap();
        for f in g2_iter {
            println!("\t{}", f.name().unwrap());
        }
        fb
    }

    // #[test]
    // fn test_v3() {
    //     test(3);
    // }

    #[test]
    fn test_v4() {
        test(4);
    }

    // #[test]
    // fn test_v5() {
    //     test(5);
    // }

    // #[test]
    // fn test_v6() {
    //     test(6);
    // }

    // #[test]
    // fn test_v7() {
    //     test(7);
    // }

    // #[test]
    // fn test_v8() {
    //     test(8);
    // }

    // #[test]
    // fn test_v9() {
    //     test(9);
    // }
}