1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#![allow(deprecated)]

use std::fmt;
use std::io::{self};
use std::pin::Pin;
use std::task::{Context, Poll};

use bytes::BytesMut;
use futures::{ready, Sink, Stream};
use pin_project::pin_project;
use tokio_codec::{Decoder, Encoder};
use tokio_io::{AsyncRead, AsyncWrite};

const LW: usize = 1024;
const HW: usize = 8 * 1024;
const INITIAL_CAPACITY: usize = 8 * 1024;

/// A unified `Stream` and `Sink` interface to an underlying I/O object, using
/// the `Encoder` and `Decoder` traits to encode and decode frames.
///
/// You can create a `Framed` instance by using the `AsyncRead::framed` adapter.
#[pin_project]
pub struct Framed<T, U> {
    io: T,
    codec: U,
    eof: bool,
    is_readable: bool,
    read_buf: BytesMut,
    write_buf: BytesMut,
    write_lw: usize,
    write_hw: usize,
}

impl<T, U> Framed<T, U>
where
    T: AsyncRead + AsyncWrite,
    U: Decoder + Encoder,
{
    /// Provides a `Stream` and `Sink` interface for reading and writing to this
    /// `Io` object, using `Decode` and `Encode` to read and write the raw data.
    ///
    /// Raw I/O objects work with byte sequences, but higher-level code usually
    /// wants to batch these into meaningful chunks, called "frames". This
    /// method layers framing on top of an I/O object, by using the `Codec`
    /// traits to handle encoding and decoding of messages frames. Note that
    /// the incoming and outgoing frame types may be distinct.
    ///
    /// This function returns a *single* object that is both `Stream` and
    /// `Sink`; grouping this into a single object is often useful for layering
    /// things like gzip or TLS, which require both read and write access to the
    /// underlying object.
    ///
    /// If you want to work more directly with the streams and sink, consider
    /// calling `split` on the `Framed` returned by this method, which will
    /// break them into separate objects, allowing them to interact more easily.
    pub fn new(io: T, codec: U) -> Framed<T, U> {
        Framed {
            io,
            codec,
            eof: false,
            is_readable: false,
            read_buf: BytesMut::with_capacity(INITIAL_CAPACITY),
            write_buf: BytesMut::with_capacity(HW),
            write_lw: LW,
            write_hw: HW,
        }
    }

    /// Same as `Framed::new()` with ability to specify write buffer low/high capacity watermarks.
    pub fn new_with_caps(io: T, codec: U, lw: usize, hw: usize) -> Framed<T, U> {
        debug_assert!((lw < hw) && hw != 0);
        Framed {
            io,
            codec,
            eof: false,
            is_readable: false,
            read_buf: BytesMut::with_capacity(INITIAL_CAPACITY),
            write_buf: BytesMut::with_capacity(hw),
            write_lw: lw,
            write_hw: hw,
        }
    }
}

impl<T, U> Framed<T, U> {
    /// Provides a `Stream` and `Sink` interface for reading and writing to this
    /// `Io` object, using `Decode` and `Encode` to read and write the raw data.
    ///
    /// Raw I/O objects work with byte sequences, but higher-level code usually
    /// wants to batch these into meaningful chunks, called "frames". This
    /// method layers framing on top of an I/O object, by using the `Codec`
    /// traits to handle encoding and decoding of messages frames. Note that
    /// the incoming and outgoing frame types may be distinct.
    ///
    /// This function returns a *single* object that is both `Stream` and
    /// `Sink`; grouping this into a single object is often useful for layering
    /// things like gzip or TLS, which require both read and write access to the
    /// underlying object.
    ///
    /// This objects takes a stream and a readbuffer and a writebuffer. These
    /// field can be obtained from an existing `Framed` with the
    /// `into_parts` method.
    ///
    /// If you want to work more directly with the streams and sink, consider
    /// calling `split` on the `Framed` returned by this method, which will
    /// break them into separate objects, allowing them to interact more easily.
    pub fn from_parts(parts: FramedParts<T, U>) -> Framed<T, U> {
        Framed {
            io: parts.io,
            codec: parts.codec,
            eof: false,
            is_readable: false,
            write_buf: parts.write_buf,
            write_lw: parts.write_buf_lw,
            write_hw: parts.write_buf_hw,
            read_buf: parts.read_buf,
        }
    }

    /// Returns a reference to the underlying codec.
    pub fn get_codec(&self) -> &U {
        &self.codec
    }

    /// Returns a mutable reference to the underlying codec.
    pub fn get_codec_mut(&mut self) -> &mut U {
        &mut self.codec
    }

    /// Returns a reference to the underlying I/O stream wrapped by
    /// `Frame`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_ref(&self) -> &T {
        &self.io
    }

    /// Returns a mutable reference to the underlying I/O stream wrapped by
    /// `Frame`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.io
    }

    /// Check if write buffer is empty.
    pub fn is_write_buf_empty(&self) -> bool {
        self.write_buf.is_empty()
    }

    /// Check if write buffer is full.
    pub fn is_write_buf_full(&self) -> bool {
        self.write_buf.len() >= self.write_hw
    }

    /// Consumes the `Frame`, returning its underlying I/O stream.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn into_inner(self) -> T {
        self.io
    }

    /// Consume the `Frame`, returning `Frame` with different codec.
    pub fn into_framed<U2>(self, codec: U2) -> Framed<T, U2> {
        Framed {
            io: self.io,
            codec,
            eof: self.eof,
            is_readable: self.is_readable,
            read_buf: self.read_buf,
            write_buf: self.write_buf,
            write_lw: self.write_lw,
            write_hw: self.write_hw,
        }
    }

    /// Consume the `Frame`, returning `Frame` with different io.
    pub fn map_io<F, T2>(self, f: F) -> Framed<T2, U>
    where
        F: Fn(T) -> T2,
    {
        Framed {
            io: f(self.io),
            codec: self.codec,
            eof: self.eof,
            is_readable: self.is_readable,
            read_buf: self.read_buf,
            write_buf: self.write_buf,
            write_lw: self.write_lw,
            write_hw: self.write_hw,
        }
    }

    /// Consume the `Frame`, returning `Frame` with different codec.
    pub fn map_codec<F, U2>(self, f: F) -> Framed<T, U2>
    where
        F: Fn(U) -> U2,
    {
        Framed {
            io: self.io,
            codec: f(self.codec),
            eof: self.eof,
            is_readable: self.is_readable,
            read_buf: self.read_buf,
            write_buf: self.write_buf,
            write_lw: self.write_lw,
            write_hw: self.write_hw,
        }
    }

    /// Consumes the `Frame`, returning its underlying I/O stream, the buffer
    /// with unprocessed data, and the codec.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn into_parts(self) -> FramedParts<T, U> {
        FramedParts {
            io: self.io,
            codec: self.codec,
            read_buf: self.read_buf,
            write_buf: self.write_buf,
            write_buf_lw: self.write_lw,
            write_buf_hw: self.write_hw,
            _priv: (),
        }
    }
}

impl<T, U> Framed<T, U> {
    /// Serialize item and Write to the inner buffer
    pub fn write(&mut self, item: <U as Encoder>::Item) -> Result<(), <U as Encoder>::Error>
    where
        T: AsyncWrite,
        U: Encoder,
    {
        let len = self.write_buf.len();
        if len < self.write_lw {
            self.write_buf.reserve(self.write_hw - len)
        }
        self.codec.encode(item, &mut self.write_buf)?;
        Ok(())
    }

    pub fn is_ready(&self) -> bool {
        let len = self.write_buf.len();
        len < self.write_hw
    }

    pub fn next_item(&mut self, cx: &mut Context<'_>) -> Poll<Option<Result<U::Item, U::Error>>>
    where
        T: AsyncRead,
        U: Decoder,
    {
        loop {
            // Repeatedly call `decode` or `decode_eof` as long as it is
            // "readable". Readable is defined as not having returned `None`. If
            // the upstream has returned EOF, and the decoder is no longer
            // readable, it can be assumed that the decoder will never become
            // readable again, at which point the stream is terminated.

            if self.is_readable {
                if self.eof {
                    match self.codec.decode_eof(&mut self.read_buf) {
                        Ok(Some(frame)) => return Poll::Ready(Some(Ok(frame))),
                        Ok(None) => return Poll::Ready(None),
                        Err(e) => return Poll::Ready(Some(Err(e))),
                    }
                }

                log::trace!("attempting to decode a frame");

                match self.codec.decode(&mut self.read_buf) {
                    Ok(Some(frame)) => {
                        log::trace!("frame decoded from buffer");
                        return Poll::Ready(Some(Ok(frame)));
                    }
                    Err(e) => return Poll::Ready(Some(Err(e))),
                    _ => {
                        // Need more data
                    }
                }

                self.is_readable = false;
            }

            assert!(!self.eof);

            // Otherwise, try to read more data and try again. Make sure we've
            // got room for at least one byte to read to ensure that we don't
            // get a spurious 0 that looks like EOF
            self.read_buf.reserve(1);
            let cnt = unsafe {
                match Pin::new_unchecked(&mut self.io).poll_read_buf(cx, &mut self.read_buf) {
                    Poll::Pending => return Poll::Pending,
                    Poll::Ready(Err(e)) => return Poll::Ready(Some(Err(e.into()))),
                    Poll::Ready(Ok(cnt)) => cnt,
                }
            };

            if cnt == 0 {
                self.eof = true;
            }
            self.is_readable = true;
        }
    }

    pub fn flush(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), U::Error>>
    where
        T: AsyncWrite,
        U: Encoder,
    {
        log::trace!("flushing framed transport");

        while !self.write_buf.is_empty() {
            log::trace!("writing; remaining={}", self.write_buf.len());

            let n = ready!(
                unsafe { Pin::new_unchecked(&mut self.io) }.poll_write(cx, &self.write_buf)
            )?;

            if n == 0 {
                return Poll::Ready(Err(io::Error::new(
                    io::ErrorKind::WriteZero,
                    "failed to \
                     write frame to transport",
                )
                .into()));
            }

            // TODO: Add a way to `bytes` to do this w/o returning the drained
            // data.
            let _ = self.write_buf.split_to(n);
        }

        // Try flushing the underlying IO
        ready!(unsafe { Pin::new_unchecked(&mut self.io) }.poll_flush(cx))?;

        log::trace!("framed transport flushed");
        Poll::Ready(Ok(()))
    }

    pub fn close(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), U::Error>>
    where
        T: AsyncWrite,
        U: Encoder,
    {
        ready!(unsafe { Pin::new_unchecked(&mut self.io) }.poll_flush(cx))?;
        ready!(unsafe { Pin::new_unchecked(&mut self.io) }.poll_shutdown(cx))?;

        Poll::Ready(Ok(()))
    }
}

impl<T, U> Stream for Framed<T, U>
where
    T: AsyncRead,
    U: Decoder,
{
    type Item = Result<U::Item, U::Error>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.next_item(cx)
    }
}

impl<T, U> Sink<U::Item> for Framed<T, U>
where
    T: AsyncWrite,
    U: Encoder,
    U::Error: From<io::Error>,
{
    type Error = U::Error;

    fn poll_ready(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        if self.is_ready() {
            Poll::Ready(Ok(()))
        } else {
            Poll::Pending
        }
    }

    fn start_send(
        mut self: Pin<&mut Self>,
        item: <U as Encoder>::Item,
    ) -> Result<(), Self::Error> {
        self.write(item)
    }

    fn poll_flush(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Result<(), Self::Error>> {
        self.flush(cx)
    }

    fn poll_close(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
    ) -> Poll<Result<(), Self::Error>> {
        self.close(cx)
    }
}

impl<T, U> fmt::Debug for Framed<T, U>
where
    T: fmt::Debug,
    U: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Framed")
            .field("io", &self.io)
            .field("codec", &self.codec)
            .finish()
    }
}

/// `FramedParts` contains an export of the data of a Framed transport.
/// It can be used to construct a new `Framed` with a different codec.
/// It contains all current buffers and the inner transport.
#[derive(Debug)]
pub struct FramedParts<T, U> {
    /// The inner transport used to read bytes to and write bytes to
    pub io: T,

    /// The codec
    pub codec: U,

    /// The buffer with read but unprocessed data.
    pub read_buf: BytesMut,

    /// A buffer with unprocessed data which are not written yet.
    pub write_buf: BytesMut,

    /// A buffer low watermark capacity
    pub write_buf_lw: usize,

    /// A buffer high watermark capacity
    pub write_buf_hw: usize,

    /// This private field allows us to add additional fields in the future in a
    /// backwards compatible way.
    _priv: (),
}

impl<T, U> FramedParts<T, U> {
    /// Create a new, default, `FramedParts`
    pub fn new(io: T, codec: U) -> FramedParts<T, U> {
        FramedParts {
            io,
            codec,
            read_buf: BytesMut::new(),
            write_buf: BytesMut::new(),
            write_buf_lw: LW,
            write_buf_hw: HW,
            _priv: (),
        }
    }

    /// Create a new `FramedParts` with read buffer
    pub fn with_read_buf(io: T, codec: U, read_buf: BytesMut) -> FramedParts<T, U> {
        FramedParts {
            io,
            codec,
            read_buf,
            write_buf: BytesMut::new(),
            write_buf_lw: LW,
            write_buf_hw: HW,
            _priv: (),
        }
    }
}