1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (C) 2020 Miklos Maroti
// Licensed under the MIT license (see LICENSE)

use crate::*;
use num::{BigInt, Integer, One, Signed, Zero};

/// The Euclidean ring of integers with arbitrary large values.
pub const ZZ: Integers = Integers();

/// The set of integers whose elements are
/// [BigInt](../num/struct.BigInt.html) objects. The ring operations are the
/// normal ones. The lattice order is the normal total order.
#[derive(Clone, Debug)]
pub struct Integers();

impl Domain for Integers {
    type Elem = BigInt;

    fn equals(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        elem1 == elem2
    }
}

impl Semigroup for Integers {
    fn mul(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1 * elem2
    }
}

impl Monoid for Integers {
    fn one(&self) -> Self::Elem {
        One::one()
    }

    fn is_one(&self, elem: &Self::Elem) -> bool {
        elem.is_one()
    }

    fn try_inv(&self, elem: &Self::Elem) -> Option<Self::Elem> {
        if self.invertible(elem) {
            Some(elem.clone())
        } else {
            None
        }
    }

    fn invertible(&self, elem: &Self::Elem) -> bool {
        elem.is_one() || (-elem).is_one()
    }
}

impl AbelianGroup for Integers {
    fn zero(&self) -> Self::Elem {
        Zero::zero()
    }

    fn is_zero(&self, elem: &Self::Elem) -> bool {
        elem.is_zero()
    }

    fn neg(&self, elem: &Self::Elem) -> Self::Elem {
        -elem
    }

    fn add(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1 + elem2
    }

    fn sub(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1 - elem2
    }

    fn times(&self, num: isize, elem: &Self::Elem) -> Self::Elem {
        num * elem
    }
}

impl UnitaryRing for Integers {}

impl IntegralDomain for Integers {
    fn try_div(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Option<Self::Elem> {
        assert!(!elem2.is_zero());

        let (quo, rem) = elem1.div_rem(elem2);
        if rem.is_zero() {
            Some(quo)
        } else {
            None
        }
    }

    fn divisible(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        if elem2.is_zero() {
            elem1.is_zero()
        } else {
            elem1.is_multiple_of(elem2)
        }
    }

    fn associate_repr(&self, elem: &Self::Elem) -> Self::Elem {
        if elem.is_negative() {
            self.neg(elem)
        } else {
            elem.clone()
        }
    }

    fn associate_coef(&self, elem: &Self::Elem) -> Self::Elem {
        assert!(!elem.is_zero());
        if elem.is_negative() {
            self.neg(&One::one())
        } else {
            One::one()
        }
    }
}

impl EuclideanDomain for Integers {
    fn quo_rem(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> (Self::Elem, Self::Elem) {
        assert!(!elem2.is_zero());

        let (quo, rem) = elem1.div_rem(elem2);
        if rem.is_negative() {
            if elem2.is_negative() {
                (quo + 1, rem - elem2)
            } else {
                (quo - 1, rem + elem2)
            }
        } else {
            (quo, rem)
        }
    }

    fn reduced(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        if elem2.is_zero() {
            true
        } else {
            !elem1.is_negative() && *elem1 < elem2.abs()
        }
    }
}

impl PartialOrder for Integers {
    fn leq(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        elem1 <= elem2
    }
}

impl Lattice for Integers {
    fn meet(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.min(elem2).clone()
    }

    fn join(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.max(elem2).clone()
    }
}

impl DistributiveLattice for Integers {}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn quo_rem() {
        let ring = Integers();

        for n in -40..40 {
            let n: BigInt = n.into();
            for m in -40..40 {
                if m == 0 {
                    continue;
                }
                let m: BigInt = m.into();
                let (q, r) = ring.quo_rem(&n, &m);
                println!("n={}, m={}, q={}, r={}", n, m, q, r);
                assert_eq!(n, &m * &q + &r);
                assert!(ring.zero() <= r && r < m.abs());

                assert_eq!(q, ring.quo(&n, &m));
                assert_eq!(r, ring.rem(&n, &m));
                assert_eq!(ring.is_zero(&r), ring.divisible(&n, &m));
                assert_eq!(ring.is_zero(&q), ring.reduced(&n, &m));
            }
        }

        assert_eq!(ring.rem(&0.into(), &2.into()), 0.into());
        assert_eq!(ring.rem(&1.into(), &2.into()), 1.into());

        assert_eq!(ring.rem(&0.into(), &3.into()), 0.into());
        assert_eq!(ring.rem(&1.into(), &3.into()), 1.into());
        assert_eq!(ring.rem(&2.into(), &3.into()), 2.into());

        assert_eq!(ring.rem(&0.into(), &(-2).into()), 0.into());
        assert_eq!(ring.rem(&1.into(), &(-2).into()), 1.into());
    }
}