1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright (C) 2020 Miklos Maroti
// Licensed under the MIT license (see LICENSE)

use crate::*;
use num::rational::Ratio;

/// The field of rational numbers with arbitrary large values.
pub const QQ: ReducedFractions<Integers> = ReducedFractions { base: Integers() };

/// The field of fractions over the elements of an Euclidean domain. The
/// elements are ratios where the numerator and denominator are relative
/// primes and the denominator is normalized with respect to its associate
/// class.
#[derive(Clone, Debug)]
pub struct ReducedFractions<A>
where
    A: EuclideanDomain,
{
    base: A,
}

impl<A> ReducedFractions<A>
where
    A: EuclideanDomain,
{
    /// Creates a new field of fractions over the given ring. The ring cannot
    /// be trivial, that is one must be different from zero.
    pub fn new(base: A) -> Self {
        assert!(!base.is_zero(&base.one()));
        Self { base }
    }

    /// Returns the base ring from which this field was created.
    pub fn base(&self) -> &A {
        &self.base
    }

    /// Takes an arbitrary ratio of elements and turns it into its normal form.
    pub fn reduce(&self, elem: &Ratio<A::Elem>) -> Ratio<A::Elem> {
        assert!(!self.base.is_zero(elem.denom()));
        let gcd = self.base.gcd(elem.numer(), elem.denom());
        let numer = self.base.quo(elem.numer(), &gcd);
        let denom = self.base.quo(elem.denom(), &gcd);
        let coef = self.base.associate_coef(&denom);
        let (numer, denom) = if !self.base.is_one(&coef) {
            (self.base.mul(&numer, &coef), self.base.mul(&denom, &coef))
        } else {
            (numer, denom)
        };
        Ratio::new_raw(numer, denom)
    }
}

impl<A> Domain for ReducedFractions<A>
where
    A: EuclideanDomain,
{
    type Elem = Ratio<A::Elem>;

    fn contains(&self, elem: &Self::Elem) -> bool {
        self.base.relative_primes(elem.numer(), elem.denom())
            && self.base.is_one(&self.base.associate_coef(elem.denom()))
    }

    fn equals(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        self.base.equals(elem1.numer(), elem2.numer())
            && self.base.equals(elem1.denom(), elem2.denom())
    }
}

impl<A> Semigroup for ReducedFractions<A>
where
    A: EuclideanDomain,
{
    fn mul(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        let elem = Self::Elem::new_raw(
            self.base.mul(elem1.numer(), elem2.numer()),
            self.base.mul(elem1.denom(), elem2.denom()),
        );
        self.reduce(&elem)
    }
}

impl<A> Monoid for ReducedFractions<A>
where
    A: EuclideanDomain,
{
    fn one(&self) -> Self::Elem {
        Self::Elem::new_raw(self.base.one(), self.base.one())
    }

    fn is_one(&self, elem: &Self::Elem) -> bool {
        self.base.is_one(elem.numer()) && self.base.is_one(elem.denom())
    }

    fn try_inv(&self, elem: &Self::Elem) -> Option<Self::Elem> {
        if self.invertible(elem) {
            let elem = Self::Elem::new_raw(elem.denom().clone(), elem.numer().clone());
            Some(self.reduce(&elem))
        } else {
            None
        }
    }

    fn invertible(&self, elem: &Self::Elem) -> bool {
        !self.base.is_zero(elem.numer())
    }
}

impl<A> AbelianGroup for ReducedFractions<A>
where
    A: EuclideanDomain,
{
    fn zero(&self) -> Self::Elem {
        Self::Elem::new_raw(self.base.zero(), self.base.one())
    }

    fn neg(&self, elem: &Self::Elem) -> Self::Elem {
        Self::Elem::new_raw(self.base.neg(elem.numer()), elem.denom().clone())
    }

    fn add(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        let elem = if self.base.equals(elem1.denom(), elem2.denom()) {
            Self::Elem::new_raw(
                self.base.add(elem1.numer(), elem2.numer()),
                elem1.denom().clone(),
            )
        } else {
            Self::Elem::new_raw(
                self.base.add(
                    &self.base.mul(elem1.numer(), elem2.denom()),
                    &self.base.mul(elem1.denom(), elem2.numer()),
                ),
                self.base.mul(elem1.denom(), elem2.denom()),
            )
        };
        self.reduce(&elem)
    }

    fn times(&self, num: isize, elem: &Self::Elem) -> Self::Elem {
        let elem = Self::Elem::new_raw(self.base.times(num, elem.numer()), elem.denom().clone());
        self.reduce(&elem)
    }
}

impl<A> UnitaryRing for ReducedFractions<A> where A: EuclideanDomain {}

impl<A> Field for ReducedFractions<A>
where
    A: EuclideanDomain,
{
    fn inv(&self, elem: &Self::Elem) -> Self::Elem {
        assert!(!self.base.is_zero(elem.numer()));
        let numer = elem.denom();
        let denom = elem.numer();
        let coef = self.base.associate_coef(denom);
        let (numer, denom) = if !self.base.is_one(&coef) {
            (self.base.mul(numer, &coef), self.base.mul(denom, &coef))
        } else {
            (numer.clone(), denom.clone())
        };
        Ratio::new_raw(numer, denom)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn ops() {
        let field = ReducedFractions::new(I32);
        for numer in -20..20 {
            for denom in -20..20 {
                if denom == 0 {
                    continue;
                }
                let elem1 = Ratio::<i32>::new_raw(numer, denom);
                assert_eq!(*elem1.numer(), numer);
                assert_eq!(*elem1.denom(), denom);

                let elem1 = field.reduce(&elem1);
                let elem2 = Ratio::<i32>::new(numer, denom);
                assert_eq!(elem1, elem2);

                let elem2 = Ratio::<i32>::new(-2, 3);
                assert_eq!(elem1 + elem2, field.add(&elem1, &elem2));
                assert_eq!(elem1 * elem2, field.mul(&elem1, &elem2));
                assert_eq!(elem1 / elem2, field.div(&elem1, &elem2));
                if numer != 0 {
                    assert_eq!(elem2 / elem1, field.div(&elem2, &elem1));
                }

                let elem2 = Ratio::<i32>::new(7, 5);
                assert_eq!(elem1 + elem2, field.add(&elem1, &elem2));
                assert_eq!(elem1 * elem2, field.mul(&elem1, &elem2));
                assert_eq!(elem1 / elem2, field.div(&elem1, &elem2));
                if numer != 0 {
                    assert_eq!(elem2 / elem1, field.div(&elem2, &elem1));
                }
            }
        }
    }
}