1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// Copyright (C) 2020 Miklos Maroti
// Licensed under the MIT license (see LICENSE)

use crate::*;
use num::{PrimInt, Signed};
use std::convert::{From, TryFrom, TryInto};
use std::fmt::Debug;
use std::marker::PhantomData;

/// The Euclidean ring of integers with `i8` primitive values and checked
/// operations.
pub const I8: CheckedInts<i8> = CheckedInts {
    phantom: PhantomData,
};

/// The Euclidean ring of integers with `i16` primitive values and checked
/// operations.
pub const I16: CheckedInts<i16> = CheckedInts {
    phantom: PhantomData,
};

/// The Euclidean ring of integers with `i32` primitive values and checked
/// operations.
pub const I32: CheckedInts<i32> = CheckedInts {
    phantom: PhantomData,
};

/// The Euclidean ring of integers with `i64` primitive values and checked
/// operations.
pub const I64: CheckedInts<i64> = CheckedInts {
    phantom: PhantomData,
};

/// The set of integers whose elements are stored in a primitive signed
/// integer type. This structure is functionally equivalent to the set
/// of all integers, but some operations are going to panic if the
/// mathematical result cannot be represented in the primitive type.
/// The lattice order is the normal total order, which is not bounded.
#[derive(Clone, Debug)]
pub struct CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    phantom: PhantomData<E>,
}

impl<E> Domain for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    type Elem = E;

    fn equals(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        elem1 == elem2
    }
}

impl<E> Semigroup for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn mul(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.checked_mul(elem2).unwrap()
    }
}

impl<E> Monoid for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn one(&self) -> Self::Elem {
        1.into()
    }

    fn is_one(&self, elem: &Self::Elem) -> bool {
        *elem == 1.into()
    }

    fn try_inv(&self, elem: &Self::Elem) -> Option<Self::Elem> {
        if self.invertible(elem) {
            Some(*elem)
        } else {
            None
        }
    }

    fn invertible(&self, elem: &Self::Elem) -> bool {
        *elem == 1.into() || *elem == (-1).into()
    }
}

impl<E> AbelianGroup for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn zero(&self) -> Self::Elem {
        0.into()
    }

    fn is_zero(&self, elem: &Self::Elem) -> bool {
        elem.is_zero()
    }

    fn neg(&self, elem: &Self::Elem) -> Self::Elem {
        self.zero().checked_sub(elem).unwrap()
    }

    fn add(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.checked_add(elem2).unwrap()
    }

    fn sub(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.checked_sub(elem2).unwrap()
    }

    fn times(&self, num: isize, elem: &Self::Elem) -> Self::Elem {
        let num: Option<Self::Elem> = num.try_into().ok();
        elem.checked_mul(&num.expect("too large value")).unwrap()
    }
}

impl<E> UnitaryRing for CheckedInts<E> where E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize> {}

impl<E> IntegralDomain for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn try_div(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Option<Self::Elem> {
        assert!(*elem2 != 0.into());

        let quo = elem1.checked_div(elem2).unwrap();
        if *elem1 == quo * *elem2 {
            Some(quo)
        } else {
            None
        }
    }

    fn associate_repr(&self, elem: &Self::Elem) -> Self::Elem {
        if *elem < 0.into() {
            self.neg(elem)
        } else {
            *elem
        }
    }

    fn associate_coef(&self, elem: &Self::Elem) -> Self::Elem {
        assert!(*elem != 0.into());
        if *elem < 0.into() {
            (-1).into()
        } else {
            1.into()
        }
    }
}

impl<E> EuclideanDomain for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn quo_rem(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> (Self::Elem, Self::Elem) {
        assert!(*elem2 != 0.into());

        let quo = elem1.checked_div(elem2).unwrap();
        let rem = *elem1 - quo * *elem2;

        if rem < 0.into() {
            if *elem2 < 0.into() {
                (quo + 1.into(), rem - *elem2)
            } else {
                (quo - 1.into(), rem + *elem2)
            }
        } else {
            (quo, rem)
        }
    }

    fn reduced(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        if *elem2 == 0.into() {
            true
        } else if *elem1 < 0.into() {
            false
        } else if *elem2 >= 0.into() {
            *elem1 < *elem2
        } else {
            -*elem1 > *elem2
        }
    }
}

impl<E> PartialOrder for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn leq(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        *elem1 <= *elem2
    }
}

impl<E> Lattice for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>,
{
    fn meet(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        *elem1.min(elem2)
    }

    fn join(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        *elem1.max(elem2)
    }
}

impl<E> DistributiveLattice for CheckedInts<E> where
    E: PrimInt + Signed + Debug + From<i8> + TryFrom<isize>
{
}

#[cfg(test)]
mod tests {
    use super::*;
    use num::BigInt;

    #[test]
    fn quo_rem() {
        let ring1 = I32;
        let ring2 = Integers();

        let mut elems: Vec<i32> = Default::default();
        for i in 0..10 {
            elems.push(i);
            if i > 0 {
                elems.push(-i);
            }
            elems.push(i32::MIN + i);
            elems.push(i32::MAX - i);
        }

        let min2: BigInt = i32::MIN.into();
        let max2: BigInt = i32::MAX.into();

        for &n1 in elems.iter() {
            let n2: BigInt = n1.into();
            for &m1 in elems.iter() {
                if m1 == 0 {
                    continue;
                }
                let m2: BigInt = m1.into();

                let (q2, r2) = ring2.quo_rem(&n2, &m2);
                if min2 <= q2 && q2 <= max2 && min2 <= r2 && r2 <= max2 {
                    let (q1, r1) = ring1.quo_rem(&n1, &m1);
                    println!(
                        "n1={}, m1={}, q1={}, r1={}, q2={}, r2={}",
                        n1, m1, q1, r1, q2, r2
                    );

                    assert_eq!(q2, q1.into());
                    assert_eq!(r2, r1.into());

                    assert_eq!(ring1.divisible(&n1, &m1), ring2.divisible(&n2, &m2));
                    assert_eq!(ring1.reduced(&n1, &m1), ring2.reduced(&n2, &m2));
                } else {
                    let result = std::panic::catch_unwind(|| {
                        ring1.quo_rem(&n1, &m1);
                    });
                    assert!(result.is_err());
                }
            }
        }
    }

    #[test]
    fn extended_gcd() {
        let ring = I32;

        for a in -10..10 {
            for b in -10..10 {
                let (g, x, y) = ring.extended_gcd(&a, &b);
                println!("a:{}, b:{}, g:{}, x:{}, y:{}", a, b, g, x, y);
                assert_eq!(g, a * x + b * y);
                assert_eq!(g, ring.gcd(&a, &b));
                assert!(ring.divisible(&a, &g));
                assert!(ring.divisible(&b, &g));
            }
        }
    }
}