1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright (C) 2020 Miklos Maroti
// Licensed under the MIT license (see LICENSE)

use crate::{Domain, EuclideanDomain, Field, IntegralDomain, UnitaryRing};

/// The ring of polynomials over a base ring or field where each element
/// is represented as a vector whose last element, the leading coefficient (if
/// any) must be non-zero. This means that the empty vector is the zero
/// element, and every polynomial has a unique representation.
pub struct Polynomials<R>
where
    R: UnitaryRing,
{
    base: R,
}

impl<R: UnitaryRing> Polynomials<R> {
    /// Creates a new ring of polynomials over the given ring. The ring cannot
    /// be trivial, that is one must be different from zero.
    pub fn new(base: R) -> Self {
        assert!(!base.is_zero(&base.one()));
        Polynomials { base }
    }

    /// Returns the base ring from which this ring was created.
    pub fn base(&self) -> &R {
        &self.base
    }

    /// Returns the degree of the given polynomial. The zero polynomial has
    /// no degree.
    pub fn degree(&self, elem: &Vec<R::Elem>) -> Option<usize> {
        if elem.is_empty() {
            None
        } else {
            Some(elem.len() - 1)
        }
    }

    /// Returns the leading coefficient of the given polynomial. The zero
    /// polynomial has no leading coefficient.
    pub fn leading_coef(&self, elem: &Vec<R::Elem>) -> Option<R::Elem> {
        if elem.is_empty() {
            None
        } else {
            Some(elem[elem.len() - 1].clone())
        }
    }
}

impl<R> Domain for Polynomials<R>
where
    R: UnitaryRing,
{
    type Elem = Vec<R::Elem>;

    fn contains(&self, elem: &Self::Elem) -> bool {
        let mut last = &self.base.one();
        for a in elem.iter() {
            if !self.base.contains(a) {
                return false;
            }
            last = a;
        }
        !self.base.is_zero(last)
    }
}

impl<R> UnitaryRing for Polynomials<R>
where
    R: UnitaryRing,
{
    fn zero(&self) -> Self::Elem {
        Vec::new()
    }

    fn is_zero(&self, elem: &Self::Elem) -> bool {
        elem.is_empty()
    }

    fn neg(&self, elem: &Self::Elem) -> Self::Elem {
        elem.iter().map(|a| self.base.neg(a)).collect()
    }

    fn add(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        if elem1.len() != elem2.len() {
            let (elem1, elem2) = if elem1.len() > elem2.len() {
                (elem1, elem2)
            } else {
                (elem2, elem1)
            };
            let mut elem3 = elem1.clone();
            for i in 0..elem2.len() {
                elem3[i] = self.base.add(&elem1[i], &elem2[i]);
            }
            elem3
        } else {
            let mut elem3 = Vec::new();
            for i in 0..elem1.len() {
                let a = self.base.add(&elem1[i], &elem2[i]);
                if !self.base.is_zero(&a) {
                    elem3.resize(i + 1, self.base.zero());
                    elem3[i] = a;
                }
            }
            elem3
        }
    }

    fn one(&self) -> Self::Elem {
        vec![self.base.one()]
    }

    fn is_one(&self, elem: &Self::Elem) -> bool {
        elem.len() == 1 && self.base.is_one(&elem[0])
    }

    fn mul(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        if elem1.is_empty() || elem2.is_empty() {
            Vec::new()
        } else {
            let mut elem3 = Vec::with_capacity(elem1.len() + elem2.len() - 1);
            elem3.resize(elem1.len() + elem2.len() - 1, self.base.zero());
            for i in 0..elem1.len() {
                for j in 0..elem2.len() {
                    let a = self.base.mul(&elem1[i], &elem2[j]);
                    elem3[i + j] = self.base.add(&elem3[i + j], &a);
                }
            }
            elem3
        }
    }
}

impl<R> IntegralDomain for Polynomials<R> where R: IntegralDomain {}

impl<F> EuclideanDomain for Polynomials<F>
where
    F: Field,
{
    fn quo_rem(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> (Self::Elem, Self::Elem) {
        if elem2.is_empty() || elem1.len() < elem2.len() {
            return (self.zero(), elem1.clone());
        } else {
            let a = self.base.neg(&elem2[elem2.len() - 1]);
            assert!(!self.base.is_zero(&a));

            let mut quo = Vec::with_capacity(elem1.len() - elem2.len() + 1);
            quo.resize(elem1.len() - elem2.len() + 1, self.base.zero());
            let mut rem = elem1.clone();

            for i in (0..quo.len()).rev() {
                let b = self.base.div(&rem[i + elem2.len() - 1], &a);
                quo[i] = self.base.neg(&b);
                for j in 0..(elem2.len() - 1) {
                    let c = self.base.mul(&elem2[j], &b);
                    rem[i + j] = self.base.add(&rem[i + j], &c);
                }
                rem[i + elem2.len() - 1] = self.base.zero();
            }

            let mut i = elem2.len() - 1;
            while i > 0 && self.base.is_zero(&rem[i - 1]) {
                i = i - 1;
            }
            rem.truncate(i);

            while !rem.is_empty() && self.base.is_zero(&rem[rem.len() - 1]) {
                rem.pop();
            }
            (quo, rem)
        }
    }

    fn associate_repr(&self, elem: &Self::Elem) -> (Self::Elem, Self::Elem) {
        if elem.is_empty() || self.base.is_one(&elem[elem.len() - 1]) {
            (elem.clone(), self.one())
        } else {
            let a = self.base.inv(&elem[elem.len() - 1]);
            let r = elem.iter().map(|b| self.base.mul(&a, b)).collect();
            return (r, vec![a]);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{CheckedInts, QuotientField};

    #[test]
    fn field_256() {
        let ring1: CheckedInts<i32> = Default::default();
        let field1 = QuotientField::new(ring1, 2);
        let ring2 = Polynomials::new(field1);

        // the irreducible polynomial 1 + x + x^3 + x^4 + x^8
        let poly = vec![1, 1, 0, 1, 1, 0, 0, 0, 1];
        assert!(ring2.contains(&poly));
        assert_eq!(ring2.degree(&poly), Some(8));
        let field2 = QuotientField::new(ring2, poly);

        // 1 + x, primitive element, generate all 256 elements
        let gen = vec![1, 1];
        let mut elems = Vec::new();
        elems.push(field2.zero());
        elems.push(field2.one());
        let mut elem = gen.clone();
        while !field2.is_one(&elem) {
            elems.push(elem.clone());
            elem = field2.mul(&elem, &gen);
        }
        assert_eq!(elems.len(), 256);

        for a in elems {
            if !field2.is_zero(&a) {
                let b = field2.inv(&a);
                assert_eq!(field2.mul(&a, &b), field2.one())
            }
        }
    }
}