1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright (C) 2020 Miklos Maroti
// Licensed under the MIT license (see LICENSE)

use crate::{DistributiveLattice, Domain, EuclideanDomain, IntegralDomain, Lattice, UnitaryRing};
use num::{PrimInt, Signed};
use std::convert::From;
use std::fmt::Debug;
use std::marker::PhantomData;

/// The set of integers whose elements are stored in a primitive signed
/// integer type. This structure is functionally equivalent to the set
/// of all integers, but some operations are going to panic if the
/// mathematical result cannot be represented in the primitive type.
/// The lattice order is the normal total order, which is not bounded.
#[derive(Default)]
pub struct CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8>,
{
    phantom: PhantomData<E>,
}

impl<E> Domain for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8>,
{
    type Elem = E;
}

impl<E> UnitaryRing for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8>,
{
    fn zero(&self) -> Self::Elem {
        0.into()
    }

    fn is_zero(&self, elem: &Self::Elem) -> bool {
        *elem == 0.into()
    }

    fn neg(&self, elem: &Self::Elem) -> Self::Elem {
        self.zero().checked_sub(elem).unwrap()
    }

    fn sub(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.checked_sub(elem2).unwrap()
    }

    fn add(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.checked_add(elem2).unwrap()
    }

    fn one(&self) -> Self::Elem {
        1.into()
    }

    fn is_one(&self, elem: &Self::Elem) -> bool {
        *elem == 1.into()
    }

    fn mul(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        elem1.checked_mul(elem2).unwrap()
    }
}

impl<E> IntegralDomain for CheckedInts<E> where E: PrimInt + Signed + Debug + From<i8> {}

impl<E> EuclideanDomain for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8>,
{
    fn quo_rem(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> (Self::Elem, Self::Elem) {
        if *elem2 == 0.into() {
            (0.into(), *elem1)
        } else {
            let quo = elem1.checked_div(elem2).unwrap();
            let rem = *elem1 - quo * *elem2;

            if *elem1 >= 0.into() && *elem2 >= 0.into() {
                let tmp = *elem2 - rem;
                if rem > tmp {
                    return (quo + 1.into(), -tmp);
                }
            } else if *elem1 < 0.into() && *elem2 < 0.into() {
                let tmp = *elem2 - rem;
                if rem <= tmp {
                    return (quo + 1.into(), -tmp);
                }
            } else if *elem1 >= 0.into() && *elem2 < 0.into() {
                let tmp = *elem2 + rem;
                if -rem < tmp {
                    return (quo - 1.into(), tmp);
                }
            } else if *elem1 < 0.into() && *elem2 >= 0.into() {
                let tmp = *elem2 + rem;
                if -rem >= tmp {
                    return (quo - 1.into(), tmp);
                }
            }

            (quo, rem)
        }
    }

    fn is_multiple_of(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        if *elem2 == 0.into() {
            *elem1 == 0.into()
        } else if *elem2 == (-1).into() {
            true
        } else {
            (*elem1 % *elem2) == 0.into()
        }
    }

    fn is_reduced(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        if *elem2 == 0.into() {
            true
        } else {
            let elem2 = if *elem2 < 0.into() { *elem2 } else { -*elem2 };
            (elem2 + 1.into()) / 2.into() <= *elem1 && *elem1 <= -(elem2 / 2.into())
        }
    }

    fn associate_repr(&self, elem: &Self::Elem) -> (Self::Elem, Self::Elem) {
        if *elem < 0.into() {
            (self.neg(elem), (-1).into())
        } else {
            (*elem, 1.into())
        }
    }
}

impl<E> Lattice for CheckedInts<E>
where
    E: PrimInt + Signed + Debug + From<i8>,
{
    fn meet(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        *elem1.min(elem2)
    }

    fn join(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> Self::Elem {
        *elem1.max(elem2)
    }

    fn leq(&self, elem1: &Self::Elem, elem2: &Self::Elem) -> bool {
        *elem1 <= *elem2
    }
}

impl<E> DistributiveLattice for CheckedInts<E> where E: PrimInt + Signed + Debug + From<i8> {}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Integers;
    use num::BigInt;

    #[test]
    fn quo_rem() {
        let ring1: CheckedInts<i32> = Default::default();
        let ring2 = Integers();

        let mut elems: Vec<i32> = Default::default();
        for i in 0..10 {
            elems.push(i);
            if i > 0 {
                elems.push(-i);
            }
            elems.push(i32::MIN + i);
            elems.push(i32::MAX - i);
        }

        let min2: BigInt = i32::MIN.into();
        let max2: BigInt = i32::MAX.into();

        for &n1 in elems.iter() {
            let n2: BigInt = n1.into();
            for &m1 in elems.iter() {
                let m2: BigInt = m1.into();

                let (q2, r2) = ring2.quo_rem(&n2, &m2);
                if min2 <= q2 && q2 <= max2 && min2 <= r2 && r2 <= max2 {
                    let (q1, r1) = ring1.quo_rem(&n1, &m1);
                    println!(
                        "n1={}, m1={}, q1={}, r1={}, q2={}, r2={}",
                        n1, m1, q1, r1, q2, r2
                    );

                    assert_eq!(q2, q1.into());
                    assert_eq!(r2, r1.into());

                    assert_eq!(
                        ring1.is_multiple_of(&n1, &m1),
                        ring2.is_multiple_of(&n2, &m2)
                    );
                    assert_eq!(ring1.is_reduced(&n1, &m1), ring2.is_reduced(&n2, &m2));
                } else {
                    let result = std::panic::catch_unwind(|| {
                        ring1.quo_rem(&n1, &m1);
                    });
                    assert!(result.is_err());
                }
            }
        }
    }

    #[test]
    fn extended_gcd() {
        let ring: CheckedInts<i32> = Default::default();

        for a in -10..10 {
            for b in -10..10 {
                let (g, x, y) = ring.extended_gcd(&a, &b);
                println!("a:{}, b:{}, g:{}, x:{}, y:{}", a, b, g, x, y);
                assert_eq!(g, a * x + b * y);
                assert_eq!(g, ring.gcd(&a, &b));
                assert!(ring.is_multiple_of(&a, &g));
                assert!(ring.is_multiple_of(&b, &g));
            }
        }
    }
}