1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
// Disclaimer: Our ECE 421 group worked on this together
// Our code base is adapted from: https://play.rust-lang.org/?gist=d65d605a48d38648737ad2ae38f46434&version=stable

use slab::Slab;
use std::fmt;
use std::ops::{Index, IndexMut};
use std::cmp;
extern crate slab;

// prints the red black tree
impl<T: fmt::Debug + Copy> fmt::Debug for RedBlackTree<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

        // recursivley print the tree in an ordered fashion
        fn write_recursive<T: fmt::Debug + Copy>(rbTree: &RedBlackTree<T>, node: Pointer, f: &mut fmt::Formatter){
            if node.is_null(){
                write!(f, "").unwrap();
            }
            else{
                write_recursive(rbTree, rbTree[node].left, f);
                let left = rbTree[node].left;
                let right = rbTree[node].right;
                let parent = rbTree[node].parent;

                write!(f, "(value = {:?}, color = {:?}, ", rbTree[node].value, rbTree[node].color).unwrap();
                
                if left.is_null(){
                    write!(f, "left = NULL, ").unwrap();
                }
                else{
                    write!(f, "left = {:?}, ", rbTree[left].value).unwrap();
                }

                if right.is_null(){
                    write!(f, "right = NULL, ").unwrap();
                }
                else{
                    write!(f, "right = {:?}, ", rbTree[right].value).unwrap();
                }

                if parent.is_null(){
                    write!(f, "parent = NULL").unwrap();
                }
                else{
                    write!(f, "parent = {:?}", rbTree[parent].value).unwrap();
                }

                write!(f, "), \n").unwrap();

                write_recursive(rbTree, rbTree[node].right, f);

            }
        }

        write!(f, "In order traversal:(\n")?;
        write_recursive(&self, self.root, f);
        write!(f, ")")?;
        
        Ok(())
    }
}

// a respresentation of a pointer to a node
#[derive(Eq, PartialEq, Copy, Clone, Debug)]
pub struct Pointer(usize);

// define null for pointers
impl Pointer {
    #[inline]
    pub fn null() -> Pointer {
        Pointer(!0)
    }
    
    #[inline]
    pub fn is_null(&self) -> bool {
        *self == Pointer::null()
    }
}

// Just for convenience, so that we can type `self[i]` instead of `self.slab[i]`.
impl<T> Index<Pointer> for RedBlackTree<T> {
    type Output = Node<T>;
    
    fn index(&self, index: Pointer) -> &Node<T> {
        &self.slab[index.0]
    }
}

// Just for convenience, so that we can type `self[i]` instead of `self.slab[i]`.
impl<T> IndexMut<Pointer> for RedBlackTree<T> {
    fn index_mut(&mut self, index: Pointer) -> &mut Node<T> {
        &mut self.slab[index.0]
    }
}

// nodes are either red or black
#[derive(Clone, Debug, PartialEq)]
pub enum NodeColor {
    Red,
    Black,
}

// defining a node
#[derive(Debug)]
pub struct Node<T> {
    pub value: T,
    pub right: Pointer,
    pub left: Pointer,
    pub parent: Pointer,
    pub color: NodeColor,
}

// defining the red black tree structure
pub struct RedBlackTree<T> {
    pub slab: Slab<Node<T>>,
    pub root: Pointer,
}

// implementation for the red black tree
impl<T: PartialOrd + Copy + fmt::Debug> RedBlackTree<T> {
    
    // returnes a new red black tree
    pub fn new() -> Self {
        return RedBlackTree {
            slab: Slab::new(),
            root: Pointer::null(),
        }
    }

    // checks to see if a red black tree is empty
    pub fn is_empty(&self) -> bool{
        return self.root.is_null();
    }
    
    // prints the tree in order
    pub fn print_in_order_traversal(&self){
        println!("{:?}", self);
    }

    // gets a pointer to a node from the tree
    pub fn get_node(&self, val: T) -> Pointer{
        let node = self.get_node_from_node(self.root, val);

        if node.is_null(){
            println!("Node does not exist!")
        }
        return node;
    }

    // recursivley gets a node from below a specified node
    pub fn get_node_from_node(&self, node: Pointer, val:T) -> Pointer{
        if node.is_null(){
            return Pointer::null();
        }
        else{
            if self[node].value == val{
                return node;
            }
            else if val > self[node].value{
                return self.get_node_from_node(self[node].right, val);
            }
            else{
                return self.get_node_from_node(self[node].left, val);
            }
        }
    }
    
    // get the height of the tree
    pub fn get_height(&self) -> u32{
        return self.get_height_from_node(self.root);
    }

    // recursivley gets the height below a node
    pub fn get_height_from_node(&self, node: Pointer) -> u32{
        if node.is_null(){
            return 0;
        }
        else{
            let left = self.get_height_from_node(self[node].left);
            let right = self.get_height_from_node(self[node].right);
            return cmp::max(left, right) + 1;
        }
    }

    // count the number of leaf nodes in the tree
    pub fn count_leaf_nodes(&self) -> u32{
        return self.count_leaf_nodes_from_node(self.root);
    }

    // count the number of leaf nodes below a node
    pub fn count_leaf_nodes_from_node(&self, node: Pointer) -> u32{
        if node.is_null(){
            return 0;
        }
        else{
            let left = self.count_leaf_nodes_from_node(self[node].left);
            let right = self.count_leaf_nodes_from_node(self[node].right);
            if left == right && left == 0{
                return 1;
            }
            return left + right;
        }
    }

    // get the uncle of a node
    pub fn get_uncle(&self, node: Pointer) -> Pointer{
        let parent = self[node].parent;
        if parent.is_null(){
            return Pointer::null();
        }

        let grandparent = self[parent].parent;

        if grandparent.is_null(){
            return Pointer::null();
        }

        let grandparent_left = self[grandparent].left;
        let grandparent_right = self[grandparent].right;
        
        if grandparent_left.is_null(){
            return Pointer::null();
        }

        if grandparent_right.is_null(){
            return Pointer::null();
        }

        if self[parent].value == self[grandparent_left].value{
            return grandparent_right;
        }

        return grandparent_left;

    }

    // remove ownership of a node from the tree, effectivley deleting the node
    pub fn transfer_and_remove_ownership(&mut self, val: T){
        let mut newTree = RedBlackTree::new();
        for i in 0..self.slab.len(){
            if self.slab[i].value != val{
                newTree.insert(self.slab[i].value);
            }
        }
        self.slab = newTree.slab;
        self.root = newTree.root;
    }

    // fix an insert
    pub fn insert_fixup(&mut self, node: Pointer){
        let parent = self[node].parent;
        if self[node].parent.is_null(){
            return self.insert_case1(node);
        }
        
        if self[parent].color == NodeColor::Black{
            return self.insert_case2(node)
        }

        let uncle = self.get_uncle(node);

        if uncle.is_null(){
            return self.insert_case4(node);
        }
        if self[uncle].color == NodeColor::Black{
            return self.insert_case4(node);
        }

        return self.insert_case3(node)

    }

    // case 1 of fixing insert
    pub fn insert_case1(&mut self, node: Pointer){
        self[node].color = NodeColor::Black;
    }

    // case 2 of fixing insert
    pub fn insert_case2(&mut self, _node: Pointer){
        return
    }

    // case 3 of fixing insert
    pub fn insert_case3(&mut self, node: Pointer){
        let parent = self[node].parent;
        let uncle = self.get_uncle(node);
        let grandparent = self[parent].parent;

        self[parent].color = NodeColor::Black;
        self[uncle].color = NodeColor::Black;
        self[grandparent].color = NodeColor::Red;

        self.insert_fixup(grandparent);
    }

    // case 4 of fixing insert
    pub fn insert_case4(&mut self, node: Pointer){

        let parent = self[node].parent;
        let grandparent = self[parent].parent;

        let parent_left = self[parent].left;
        let parent_right = self[parent].right;

        let grandparent_left = self[grandparent].left;
        let grandparent_right = self[grandparent].right;

        let mut n = node;

        if !parent_right.is_null() && !grandparent_left.is_null() && (self[n].value == self[parent_right].value) && (self[parent].value == self[grandparent_left].value){
            self.left_rotate(parent);
            n = self[n].left;
        }
        else if !parent_left.is_null() && !grandparent_right.is_null() && (self[n].value == self[parent_left].value) && (self[parent].value == self[grandparent_right].value){
            self.right_rotate(parent);
            n = self[n].right;
        }

        self.insert_case4_part2(n);
    }

    // case 4 part 2 of fixing insert
    pub fn insert_case4_part2(&mut self, node: Pointer){
        let parent = self[node].parent;
        let grandparent = self[parent].parent;

        let parent_left = self[parent].left;

        if !parent_left.is_null() && self[node].value == self[parent_left].value{
            self.right_rotate(grandparent);
        }
        else{
            self.left_rotate(grandparent);
        }

        self[parent].color = NodeColor::Black;
        self[grandparent].color = NodeColor::Red;
    }

    // delete a node from the tree
    pub fn delete(&mut self, val: T){
        if !self.get_node(val).is_null(){
            self.transfer_and_remove_ownership(val);
        }
    }

    // insert a node into the tree
    pub fn insert(&mut self, val: T){
        if self.root.is_null(){
            self.root = Pointer(self.slab.insert(Node {
                value: val,
                right: Pointer::null(),
                left: Pointer::null(),
                parent: Pointer::null(),
                color: NodeColor::Black,
            }));
        }
        else{
            let new_node = self.insert_below_node(val, self.root);
            if !new_node.is_null(){
                self.insert_fixup(new_node);
            }
        }
    }

    // insert a node below the specified node
    pub fn insert_below_node(&mut self, val: T, node: Pointer) -> Pointer{
        let nodeValue = self[node].value;
        let left = self[node].left;
        let right = self[node].right;

        if val == nodeValue{
            println!("Duplicate node values");
            return Pointer::null();
        }
        else if val > nodeValue{
            if right.is_null(){
                self[node].right = Pointer(self.slab.insert(Node {
                    value: val,
                    right: Pointer::null(),
                    left: Pointer::null(),
                    parent: node,
                    color: NodeColor::Red,
                }));
                return self[node].right;
            }
            else{
                return self.insert_below_node(val, right);
            }
        }
        else{
            if left.is_null(){
                self[node].left = Pointer(self.slab.insert(Node {
                    value: val,
                    right: Pointer::null(),
                    left: Pointer::null(),
                    parent: node,
                    color: NodeColor::Red,
                }));
                return self[node].left;
            }
            else{
                return self.insert_below_node(val, left);
            }
        }
    }

    // rotate the node left
    pub fn left_rotate(&mut self, current: Pointer){
        let right = self[current].right;

        if right.is_null(){
            return;
        }

        let right_left = self[right].left;
        let parent = self[current].parent;

        // set W's right child to be B
        self[current].right = right_left;

        if !right_left.is_null(){
            self[right_left].parent = current;
        }

        // setting W's parent to be V
        self[current].parent = right;
        self[right].left = current;

        // Set V's parent to be W's old parent
        self[right].parent = parent;

        if parent.is_null(){
            self.root = right;
        }
        else{
            let parent_right = self[parent].right;
            if !parent_right.is_null(){
                if self[parent_right].value == self[current].value{ // set V to parent right
                    self[parent].right = right;
                }
                else{ // set V to parent left
                    self[parent].left = right;
                }
            }
            else{ // set V to parent left
                self[parent].left = right;
            }
        }
    }

    // rotate the node right
    pub fn right_rotate(&mut self, current: Pointer){
        let left = self[current].left;

        if left.is_null(){
            return;
        }

        let left_right = self[left].right;
        let parent = self[current].parent;

        // set V's left child to be B
        self[current].left = left_right;

        if !left_right.is_null(){
            self[left_right].parent = current;
        }

        // setting V's parent to be W
        self[current].parent = left;
        self[left].right = current;

        // Set W's parent to be V's old parent
        self[left].parent = parent;

        if parent.is_null(){
            self.root = left;
        }
        else{
            let parent_left = self[parent].left;
            if !parent_left.is_null(){
                if self[parent_left].value == self[current].value{ // set W to parent left
                    self[parent].left = left;
                }
                else{ // set W to parent right
                    self[parent].right = left;
                }
            }
            else{ // set W to parent right
                self[parent].right = left;
            }
        }
    }

}