1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
# Linear Algebra

This chapter describes functions for solving linear systems. The library provides linear algebra operations which operate directly on the
gsl_vector and gsl_matrix objects. These routines use the standard algorithms from Golub & Van Loan’s Matrix Computations with Level-1 and
Level-2 BLAS calls for efficiency.

## LU Decomposition

A general square matrix A has an LU decomposition into upper and lower triangular matrices,

P A = L U
where P is a permutation matrix, L is unit lower triangular matrix and U is upper triangular matrix. For square matrices this decomposition
can be used to convert the linear system A x = b into a pair of triangular systems (L y = P b, U x = y), which can be solved by forward and
back-substitution. Note that the LU decomposition is valid for singular matrices.

## QR Decomposition

A general rectangular M-by-N matrix A has a QR decomposition into the product of an orthogonal M-by-M square matrix Q (where Q^T Q = I) and
an M-by-N right-triangular matrix R,

A = Q R
This decomposition can be used to convert the linear system A x = b into the triangular system R x = Q^T b, which can be solved by back-substitution.
Another use of the QR decomposition is to compute an orthonormal basis for a set of vectors. The first N columns of Q form an orthonormal
basis for the range of A, ran(A), when A has full column rank.

## QR Decomposition with Column Pivoting

The QR decomposition can be extended to the rank deficient case by introducing a column permutation P,

A P = Q R
The first r columns of Q form an orthonormal basis for the range of A for a matrix with column rank r. This decomposition can also be used
to convert the linear system A x = b into the triangular system R y = Q^T b, x = P y, which can be solved by back-substitution and permutation.
We denote the QR decomposition with column pivoting by QRP^T since A = Q R P^T.

## Singular Value Decomposition

A general rectangular M-by-N matrix A has a singular value decomposition (SVD) into the product of an M-by-N orthogonal matrix U, an N-by-N
diagonal matrix of singular values S and the transpose of an N-by-N orthogonal square matrix V,

A = U S V^T

The singular values \sigma_i = S_{ii} are all non-negative and are generally chosen to form a non-increasing sequence \sigma_1 >= \sigma_2 >=
... >= \sigma_N >= 0.

The singular value decomposition of a matrix has many practical uses. The condition number of the matrix is given by the ratio of the largest
singular value to the smallest singular value. The presence of a zero singular value indicates that the matrix is singular. The number of
non-zero singular values indicates the rank of the matrix. In practice singular value decomposition of a rank-deficient matrix will not produce
exact zeroes for singular values, due to finite numerical precision. Small singular values should be edited by choosing a suitable tolerance.

For a rank-deficient matrix, the null space of A is given by the columns of V corresponding to the zero singular values. Similarly, the range
of A is given by columns of U corresponding to the non-zero singular values.

Note that the routines here compute the “thin” version of the SVD with U as M-by-N orthogonal matrix. This allows in-place computation and is
the most commonly-used form in practice. Mathematically, the “full” SVD is defined with U as an M-by-M orthogonal matrix and S as an M-by-N
diagonal matrix (with additional rows of zeros).

## Cholesky Decomposition

A symmetric, positive definite square matrix A has a Cholesky decomposition into a product of a lower triangular matrix L and its transpose L^T,

A = L L^T

This is sometimes referred to as taking the square-root of a matrix. The Cholesky decomposition can only be carried out when all the eigenvalues
of the matrix are positive. This decomposition can be used to convert the linear system A x = b into a pair of triangular systems (L y = b,
L^T x = y), which can be solved by forward and back-substitution.

## Tridiagonal Decomposition of Real Symmetric Matrices

A symmetric matrix A can be factorized by similarity transformations into the form,

A = Q T Q^T

where Q is an orthogonal matrix and T is a symmetric tridiagonal matrix.

## Tridiagonal Decomposition of Hermitian Matrices

A hermitian matrix A can be factorized by similarity transformations into the form,

A = U T U^T

where U is a unitary matrix and T is a real symmetric tridiagonal matrix.

## Hessenberg Decomposition of Real Matrices

A general real matrix A can be decomposed by orthogonal similarity transformations into the form

A = U H U^T

where U is orthogonal and H is an upper Hessenberg matrix, meaning that it has zeros below the first subdiagonal. The Hessenberg reduction
is the first step in the Schur decomposition for the nonsymmetric eigenvalue problem, but has applications in other areas as well.

## Hessenberg-Triangular Decomposition of Real Matrices

A general real matrix pair (A, B) can be decomposed by orthogonal similarity transformations into the form

A = U H V^T
B = U R V^T

where U and V are orthogonal, H is an upper Hessenberg matrix, and R is upper triangular. The Hessenberg-Triangular reduction is the first
step in the generalized Schur decomposition for the generalized eigenvalue problem.

## Bidiagonalization

A general matrix A can be factorized by similarity transformations into the form,

A = U B V^T
where U and V are orthogonal matrices and B is a N-by-N bidiagonal matrix with non-zero entries only on the diagonal and superdiagonal. The
size of U is M-by-N and the size of V is N-by-N.

## Householder Transformations

A Householder transformation is a rank-1 modification of the identity matrix which can be used to zero out selected elements of a vector.
A Householder matrix P takes the form,

P = I - \tau v v^T

where v is a vector (called the Householder vector) and \tau = 2/(v^T v). The functions described in this section use the rank-1 structure
of the Householder matrix to create and apply Householder transformations efficiently.

## Tridiagonal Systems

The functions described in this section efficiently solve symmetric, non-symmetric and cyclic tridiagonal systems with minimal storage. Note
that the current implementations of these functions use a variant of Cholesky decomposition, so the tridiagonal matrix must be positive definite.
For non-positive definite matrices, the functions return the error code ::Sing.

## Balancing

The process of balancing a matrix applies similarity transformations to make the rows and columns have comparable norms. This is useful, for
example, to reduce roundoff errors in the solution of eigenvalue problems. Balancing a matrix A consists of replacing A with a similar matrix

A' = D^(-1) A D

where D is a diagonal matrix whose entries are powers of the floating point radix.

##14.16 References and Further Reading

Further information on the algorithms described in this section can be found in the following book,

G. H. Golub, C. F. Van Loan, Matrix Computations (3rd Ed, 1996), Johns Hopkins University Press, ISBN 0-8018-5414-8.
The LAPACK library is described in the following manual,

LAPACK Users’ Guide (Third Edition, 1999), Published by SIAM, ISBN 0-89871-447-8.
http://www.netlib.org/lapack

The LAPACK source code can be found at the website above, along with an online copy of the users guide.

The Modified Golub-Reinsch algorithm is described in the following paper,

T.F. Chan, “An Improved Algorithm for Computing the Singular Value Decomposition”, ACM Transactions on Mathematical Software, 8 (1982), pp 72–83.
The Jacobi algorithm for singular value decomposition is described in the following papers,

J.C. Nash, “A one-sided transformation method for the singular value decomposition and algebraic eigenproblem”, Computer Journal, Volume 18, Number
1 (1975), p 74–76
J.C. Nash and S. Shlien “Simple algorithms for the partial singular value decomposition”, Computer Journal, Volume 30 (1987), p 268–275.
James Demmel, Krešimir Veselić, “Jacobi’s Method is more accurate than QR”, Lapack Working Note 15 (LAWN-15), October 1989. Available from netlib,
http://www.netlib.org/lapack/ in the lawns or lawnspdf directories.
!*/

use crate::enums;
use crate::Value;
use ffi::FFI;

use types::complex::FFFI;

/// Factorise a general N x N matrix A into,
///
///  P A = L U
///
/// where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
///
/// L is stored in the strict lower triangular part of the input matrix. The diagonal elements of L are unity and are not stored.
///
/// U is stored in the diagonal and upper triangular part of the input matrix.
///
/// P is stored in the permutation p. Column j of P is column k of the identity matrix, where `k = permutation->data[j]`
///
/// signum gives the sign of the permutation, (-1)^n, where n is the  number of interchanges in the permutation.
///
/// See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss Elimination with Partial Pivoting).
#[doc(alias = "gsl_linalg_LU_decomp")]
pub fn LU_decomp(a: &mut ::MatrixF64, p: &mut ::Permutation, signum: &mut i32) -> Value {
    Value::from(unsafe { sys::gsl_linalg_LU_decomp(a.unwrap_unique(), p.unwrap_unique(), signum) })
}

/// Factorise a general N x N complex matrix A into,
///
///   P A = L U
///
/// where P is a permutation matrix, L is unit lower triangular and U is upper triangular.
///
/// L is stored in the strict lower triangular part of the input matrix. The diagonal elements of L are unity and are not stored.
///
/// U is stored in the diagonal and upper triangular part of the input matrix.
///
/// P is stored in the permutation p. Column j of P is column k of the identity matrix, where `k = permutation->data[j]`
///
/// signum gives the sign of the permutation, (-1)^n, where n is the number of interchanges in the permutation.
///
/// See Golub & Van Loan, Matrix Computations, Algorithm 3.4.1 (Gauss Elimination with Partial Pivoting).
#[doc(alias = "gsl_linalg_complex_LU_decomp")]
pub fn complex_LU_decomp(
    a: &mut ::MatrixComplexF64,
    p: &mut ::Permutation,
    signum: &mut i32,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_LU_decomp(a.unwrap_unique(), p.unwrap_unique(), signum)
    })
}

/// This function solves the square system A x = b using the LU decomposition of A into (LU, p) given by LU_decomp or LU_decomp as input.
#[doc(alias = "gsl_linalg_LU_solve")]
pub fn LU_solve(
    lu: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_LU_solve(
            lu.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the square system A x = b using the LU decomposition of A into (LU, p) given by LU_decomp or LU_decomp as input.
#[doc(alias = "gsl_linalg_complex_LU_solve")]
pub fn complex_LU_solve(
    lu: &::MatrixComplexF64,
    p: &::Permutation,
    b: &::VectorComplexF64,
    x: &mut ::VectorComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_LU_solve(
            lu.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the square system A x = b in-place using the precomputed LU decomposition of A into (LU,p). On input x should contain
/// the right-hand side b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_LU_svx")]
pub fn LU_svx(lu: &::MatrixF64, p: &::Permutation, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_LU_svx(lu.unwrap_shared(), p.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function solves the square system A x = b in-place using the precomputed LU decomposition of A into (LU,p). On input x should contain
/// the right-hand side b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_complex_LU_svx")]
pub fn complex_LU_svx(
    lu: &::MatrixComplexF64,
    p: &::Permutation,
    x: &mut ::VectorComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_LU_svx(lu.unwrap_shared(), p.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function applies an iterative improvement to x, the solution of A x = b, from the precomputed LU decomposition of A into (LU,p). The
/// initial residual r = A x - b is also computed and stored in residual.
#[doc(alias = "gsl_linalg_LU_refine")]
pub fn LU_refine(
    a: &::MatrixF64,
    lu: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
    residual: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_LU_refine(
            a.unwrap_shared(),
            lu.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
            residual.unwrap_unique(),
        )
    })
}

/// This function applies an iterative improvement to x, the solution of A x = b, from the precomputed LU decomposition of A into (LU,p). The
/// initial residual r = A x - b is also computed and stored in residual.
#[doc(alias = "gsl_linalg_complex_LU_refine")]
pub fn complex_LU_refine(
    a: &mut ::MatrixComplexF64,
    lu: &::MatrixComplexF64,
    p: &::Permutation,
    b: &::VectorComplexF64,
    x: &mut ::VectorComplexF64,
    residual: &mut ::VectorComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_LU_refine(
            a.unwrap_unique(),
            lu.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
            residual.unwrap_unique(),
        )
    })
}

/// This function computes the inverse of a matrix A from its LU decomposition (LU,p), storing the result in the matrix inverse. The inverse
/// is computed by solving the system A x = b for each column of the identity matrix. It is preferable to avoid direct use of the inverse
/// whenever possible, as the linear solver functions can obtain the same result more efficiently and reliably (consult any introductory
/// textbook on numerical linear algebra for details).
#[doc(alias = "gsl_linalg_LU_invert")]
pub fn LU_invert(lu: &::MatrixF64, p: &::Permutation, inverse: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_LU_invert(
            lu.unwrap_shared(),
            p.unwrap_shared(),
            inverse.unwrap_unique(),
        )
    })
}

/// This function computes the inverse of a matrix A from its LU decomposition (LU,p), storing the result in the matrix inverse. The inverse
/// is computed by solving the system A x = b for each column of the identity matrix. It is preferable to avoid direct use of the inverse
/// whenever possible, as the linear solver functions can obtain the same result more efficiently and reliably (consult any introductory
/// textbook on numerical linear algebra for details).
#[doc(alias = "gsl_linalg_complex_LU_invert")]
pub fn complex_LU_invert(
    lu: &::MatrixComplexF64,
    p: &::Permutation,
    inverse: &mut ::MatrixComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_LU_invert(
            lu.unwrap_shared(),
            p.unwrap_shared(),
            inverse.unwrap_unique(),
        )
    })
}

/// This function computes the determinant of a matrix A from its LU decomposition, LU. The determinant is computed as the product of the
/// diagonal elements of U and the sign of the row permutation signum.
#[doc(alias = "gsl_linalg_LU_det")]
pub fn LU_det(lu: &mut ::MatrixF64, signum: i32) -> f64 {
    unsafe { sys::gsl_linalg_LU_det(lu.unwrap_unique(), signum) }
}

/// This function computes the determinant of a matrix A from its LU decomposition, LU. The determinant is computed as the product of the
/// diagonal elements of U and the sign of the row permutation signum.
#[doc(alias = "gsl_linalg_complex_LU_det")]
pub fn complex_LU_det(lu: &mut ::MatrixComplexF64, signum: i32) -> ::ComplexF64 {
    unsafe { sys::gsl_linalg_complex_LU_det(lu.unwrap_unique(), signum).wrap() }
}

/// These functions compute the logarithm of the absolute value of the determinant of a matrix A, \ln|\det(A)|, from its LU decomposition,
/// LU. This function may be useful if the direct computation of the determinant would overflow or underflow.
#[doc(alias = "gsl_linalg_LU_lndet")]
pub fn LU_lndet(lu: &mut ::MatrixF64) -> f64 {
    unsafe { sys::gsl_linalg_LU_lndet(lu.unwrap_unique()) }
}

/// This function computes the sign or phase factor of the determinant of a matrix A, \det(A)/|\det(A)|, from its LU decomposition, LU.
#[doc(alias = "gsl_linalg_complex_LU_lndet")]
pub fn complex_LU_lndet(lu: &mut ::MatrixComplexF64) -> f64 {
    unsafe { sys::gsl_linalg_complex_LU_lndet(lu.unwrap_unique()) }
}

/// This function computes the sign or phase factor of the determinant of a matrix A, \det(A)/|\det(A)|, from its LU decomposition, LU.
#[doc(alias = "gsl_linalg_LU_sgndet")]
pub fn LU_sgndet(lu: &mut ::MatrixF64, signum: i32) -> i32 {
    unsafe { sys::gsl_linalg_LU_sgndet(lu.unwrap_unique(), signum) }
}

/// This function computes the sign or phase factor of the determinant of a matrix A, \det(A)/|\det(A)|, from its LU decomposition, LU.
#[doc(alias = "gsl_linalg_complex_LU_sgndet")]
pub fn complex_LU_sgndet(lu: &mut ::MatrixComplexF64, signum: i32) -> ::ComplexF64 {
    unsafe { sys::gsl_linalg_complex_LU_sgndet(lu.unwrap_unique(), signum).wrap() }
}

/// This function factorizes the M-by-N matrix A into the QR decomposition A = Q R. On output the diagonal and upper triangular part of the
/// input matrix contain the matrix R. The vector tau and the columns of the lower triangular part of the matrix A contain the Householder
/// coefficients and Householder vectors which encode the orthogonal matrix Q. The vector tau must be of length k=\min(M,N). The matrix Q
/// is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is the Householder vector v_i =
/// (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by LAPACK.
///
/// The algorithm used to perform the decomposition is Householder QR (Golub & Van Loan, Matrix Computations, Algorithm 5.2.1).
#[doc(alias = "gsl_linalg_QR_decomp")]
pub fn QR_decomp(a: &mut ::MatrixF64, tau: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_QR_decomp(a.unwrap_unique(), tau.unwrap_unique()) })
}

/// This function solves the square system A x = b using the QR decomposition of A held in (QR, tau) which must have been computed previously
/// with gsl_linalg_QR_decomp. The least-squares solution for rectangular systems can be found using QR_lssolve.
#[doc(alias = "gsl_linalg_QR_solve")]
pub fn QR_solve(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_solve(
            qr.unwrap_shared(),
            tau.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the square system A x = b in-place using the QR decomposition of A held in (QR,tau) which must have been computed
/// previously by gsl_linalg_QR_decomp. On input x should contain the right-hand side b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_QR_svx")]
pub fn QR_svx(qr: &::MatrixF64, tau: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_svx(qr.unwrap_shared(), tau.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function finds the least squares solution to the overdetermined system A x = b where the matrix A has more rows than columns. The
/// least squares solution minimizes the Euclidean norm of the residual, ||Ax - b||.The routine requires as input the QR decomposition of
/// A into (QR, tau) given by gsl_linalg_QR_decomp. The solution is returned in x. The residual is computed as a by-product and stored in
/// residual.
#[doc(alias = "gsl_linalg_QR_lssolve")]
pub fn QR_lssolve(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
    residual: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_lssolve(
            qr.unwrap_shared(),
            tau.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
            residual.unwrap_unique(),
        )
    })
}

/// This function applies the matrix Q^T encoded in the decomposition (QR,tau) to the vector v, storing the result Q^T v in v. The matrix
/// multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T.
#[doc(alias = "gsl_linalg_QR_QTvec")]
pub fn QR_QTvec(qr: &::MatrixF64, tau: &::VectorF64, v: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_QTvec(qr.unwrap_shared(), tau.unwrap_shared(), v.unwrap_unique())
    })
}

/// This function applies the matrix Q encoded in the decomposition (QR,tau) to the vector v, storing the result Q v in v. The matrix
/// multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q.
#[doc(alias = "gsl_linalg_QR_Qvec")]
pub fn QR_Qvec(qr: &::MatrixF64, tau: &::VectorF64, v: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_Qvec(qr.unwrap_shared(), tau.unwrap_shared(), v.unwrap_unique())
    })
}

/// This function applies the matrix Q^T encoded in the decomposition (QR,tau) to the matrix A, storing the result Q^T A in A. The matrix
/// multiplication is carried out directly using the encoding of the Householder vectors without needing to form the full matrix Q^T.
#[doc(alias = "gsl_linalg_QR_QTmat")]
pub fn QR_QTmat(qr: &::MatrixF64, tau: &::VectorF64, v: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_QTmat(qr.unwrap_shared(), tau.unwrap_shared(), v.unwrap_unique())
    })
}

/// This function solves the triangular system R x = b for x. It may be useful if the product b' = Q^T b has already been computed using
/// gsl_linalg_QR_QTvec.
#[doc(alias = "gsl_linalg_QR_Rsolve")]
pub fn QR_Rsolve(qr: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_Rsolve(qr.unwrap_shared(), b.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function solves the triangular system R x = b for x in-place. On input x should contain the right-hand side b and is replaced by
/// the solution on output. This function may be useful if the product b' = Q^T b has already been computed using gsl_linalg_QR_QTvec.
#[doc(alias = "gsl_linalg_QR_Rsvx")]
pub fn QR_Rsvx(qr: &::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_QR_Rsvx(qr.unwrap_shared(), x.unwrap_unique()) })
}

/// This function unpacks the encoded QR decomposition (QR,tau) into the matrices Q and R, where Q is M-by-M and R is M-by-N.
#[doc(alias = "gsl_linalg_QR_unpack")]
pub fn QR_unpack(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_unpack(
            qr.unwrap_shared(),
            tau.unwrap_shared(),
            q.unwrap_unique(),
            r.unwrap_unique(),
        )
    })
}

/// This function solves the system R x = Q^T b for x. It can be used when the QR decomposition of a matrix is available in unpacked
/// form as (Q, R).
#[doc(alias = "gsl_linalg_QR_QRsolve")]
pub fn QR_QRsolve(
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_QRsolve(
            q.unwrap_unique(),
            r.unwrap_unique(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function performs a rank-1 update w v^T of the QR decomposition (Q, R). The update is given by Q'R' = Q (R + w v^T) where the
/// output matrices Q' and R' are also orthogonal and right triangular. Note that w is destroyed by the update.
#[doc(alias = "gsl_linalg_QR_update")]
pub fn QR_update(
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    mut w: ::VectorF64,
    v: &::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QR_update(
            q.unwrap_unique(),
            r.unwrap_unique(),
            w.unwrap_unique(),
            v.unwrap_shared(),
        )
    })
}

/// This function solves the triangular system R x = b for the N-by-N matrix R.
#[doc(alias = "gsl_linalg_R_solve")]
pub fn R_solve(r: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_R_solve(r.unwrap_shared(), b.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function solves the triangular system R x = b in-place. On input x should contain the right-hand side b, which is replaced by
/// the solution on output.
#[doc(alias = "gsl_linalg_R_svx")]
pub fn R_svx(r: &::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_R_svx(r.unwrap_shared(), x.unwrap_unique()) })
}

/// This function factorizes the M-by-N matrix A into the QRP^T decomposition A = Q R P^T. On output the diagonal and upper triangular part
/// of the input matrix contain the matrix R. The permutation matrix P is stored in the permutation p. The sign of the permutation is given
/// by signum. It has the value (-1)^n, where n is the number of interchanges in the permutation. The vector tau and the columns of the lower
/// triangular part of the matrix A contain the Householder coefficients and vectors which encode the orthogonal matrix Q. The vector tau must
/// be of length k=\min(M,N). The matrix Q is related to these components by, Q = Q_k ... Q_2 Q_1 where Q_i = I - \tau_i v_i v_i^T and v_i is
/// the Householder vector v_i = (0,...,1,A(i+1,i),A(i+2,i),...,A(m,i)). This is the same storage scheme as used by LAPACK. The vector norm is
/// a workspace of length N used for column pivoting.
///
/// The algorithm used to perform the decomposition is Householder QR with column pivoting (Golub & Van Loan, Matrix Computations, Algorithm 5.4.1).
#[doc(alias = "gsl_linalg_QRPT_decomp")]
pub fn QRPT_decomp(
    a: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    p: &mut ::Permutation,
    signum: &mut i32,
    norm: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_decomp(
            a.unwrap_unique(),
            tau.unwrap_unique(),
            p.unwrap_unique(),
            signum,
            norm.unwrap_unique(),
        )
    })
}

/// This function factorizes the matrix A into the decomposition A = Q R P^T without modifying A itself and storing the output in the separate
/// matrices q and r.
#[doc(alias = "gsl_linalg_QRPT_decomp2")]
pub fn QRPT_decomp2(
    a: &::MatrixF64,
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    p: &mut ::Permutation,
    signum: &mut i32,
    norm: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_decomp2(
            a.unwrap_shared(),
            q.unwrap_unique(),
            r.unwrap_unique(),
            tau.unwrap_unique(),
            p.unwrap_unique(),
            signum,
            norm.unwrap_unique(),
        )
    })
}

/// This function solves the square system A x = b using the QRP^T decomposition of A held in (QR, tau, p) which must have been computed previously
/// by QRPT_decomp.
#[doc(alias = "gsl_linalg_QRPT_solve")]
pub fn QRPT_solve(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_solve(
            qr.unwrap_shared(),
            tau.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the square system A x = b in-place using the QRP^T decomposition of A held in (QR,tau,p). On input x should contain the
/// right-hand side b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_QRPT_svx")]
pub fn QRPT_svx(
    qr: &::MatrixF64,
    tau: &::VectorF64,
    p: &::Permutation,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_svx(
            qr.unwrap_shared(),
            tau.unwrap_shared(),
            p.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the square system R P^T x = Q^T b for x. It can be used when the QR decomposition of a matrix is available in unpacked
/// form as (Q, R).
#[doc(alias = "gsl_linalg_QRPT_QRsolve")]
pub fn QRPT_QRsolve(
    q: &::MatrixF64,
    r: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_QRsolve(
            q.unwrap_shared(),
            r.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function performs a rank-1 update w v^T of the QRP^T decomposition (Q, R, p). The update is given by Q'R' = Q (R + w v^T P) where the
/// output matrices Q' and R' are also orthogonal and right triangular. Note that w is destroyed by the update. The permutation p is not changed.
#[doc(alias = "gsl_linalg_QRPT_update")]
pub fn QRPT_update(
    q: &mut ::MatrixF64,
    r: &mut ::MatrixF64,
    p: &::Permutation,
    w: &mut ::VectorF64,
    v: &::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_update(
            q.unwrap_unique(),
            r.unwrap_unique(),
            p.unwrap_shared(),
            w.unwrap_unique(),
            v.unwrap_shared(),
        )
    })
}

/// This function solves the triangular system R P^T x = b for the N-by-N matrix R contained in QR.
#[doc(alias = "gsl_linalg_QRPT_Rsolve")]
pub fn QRPT_Rsolve(
    qr: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_Rsolve(
            qr.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the triangular system R P^T x = b in-place for the N-by-N matrix R contained in QR. On input x should contain the
/// right-hand side b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_QRPT_Rsvx")]
pub fn QRPT_Rsvx(qr: &::MatrixF64, p: &::Permutation, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_QRPT_Rsvx(qr.unwrap_shared(), p.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function factorizes the M-by-N matrix A into the singular value decomposition A = U S V^T for M >= N. On output the matrix A is replaced
/// by U. The diagonal elements of the singular value matrix S are stored in the vector S. The singular values are non-negative and form a
/// non-increasing sequence from S_1 to S_N. The matrix V contains the elements of V in untransposed form. To form the product U S V^T it is
/// necessary to take the transpose of V. A workspace of length N is required in work.
///
/// This routine uses the Golub-Reinsch SVD algorithm.
#[doc(alias = "gsl_linalg_SV_decomp")]
pub fn SV_decomp(
    a: &mut ::MatrixF64,
    v: &mut ::MatrixF64,
    s: &mut ::VectorF64,
    work: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_SV_decomp(
            a.unwrap_unique(),
            v.unwrap_unique(),
            s.unwrap_unique(),
            work.unwrap_unique(),
        )
    })
}

/// This function computes the SVD using the modified Golub-Reinsch algorithm, which is faster for M>>N. It requires the vector work of length
/// N and the N-by-N matrix X as additional working space.
#[doc(alias = "gsl_linalg_SV_decomp_mod")]
pub fn SV_decomp_mod(
    a: &mut ::MatrixF64,
    x: &mut ::MatrixF64,
    v: &mut ::MatrixF64,
    s: &mut ::VectorF64,
    work: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_SV_decomp_mod(
            a.unwrap_unique(),
            x.unwrap_unique(),
            v.unwrap_unique(),
            s.unwrap_unique(),
            work.unwrap_unique(),
        )
    })
}

/// This function computes the SVD of the M-by-N matrix A using one-sided Jacobi orthogonalization for M >= N. The Jacobi method can compute
/// singular values to higher relative accuracy than Golub-Reinsch algorithms (see references for details).
#[doc(alias = "gsl_linalg_SV_decomp_jacobi")]
pub fn SV_decomp_jacobi(a: &mut ::MatrixF64, v: &mut ::MatrixF64, s: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_SV_decomp_jacobi(a.unwrap_unique(), v.unwrap_unique(), s.unwrap_unique())
    })
}

/// This function solves the system A x = b using the singular value decomposition (U, S, V) of A which must have been computed previously
/// with gsl_linalg_SV_decomp.
///
/// Only non-zero singular values are used in computing the solution. The parts of the solution corresponding to singular values of zero are
/// ignored. Other singular values can be edited out by setting them to zero before calling this function.
///
/// In the over-determined case where A has more rows than columns the system is solved in the least squares sense, returning the solution
/// x which minimizes ||A x - b||_2.
#[doc(alias = "gsl_linalg_SV_solve")]
pub fn SV_solve(
    u: &::MatrixF64,
    v: &::MatrixF64,
    s: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_SV_solve(
            u.unwrap_shared(),
            v.unwrap_shared(),
            s.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function computes the statistical leverage values h_i of a matrix A using its singular value decomposition (U, S, V) previously computed
/// with gsl_linalg_SV_decomp. h_i are the diagonal values of the matrix A (A^T A)^{-1} A^T and depend only on the matrix U which is the input to
/// this function.
#[doc(alias = "gsl_linalg_SV_leverage")]
pub fn SV_leverage(u: &::MatrixF64, h: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_SV_leverage(u.unwrap_shared(), h.unwrap_unique()) })
}

/// This function factorizes the symmetric, positive-definite square matrix A into the Cholesky decomposition A = L L^T (or A = L L^H for
/// the complex case). On input, the values from the diagonal and lower-triangular part of the matrix A are used (the upper triangular part
/// is ignored). On output the diagonal and lower triangular part of the input matrix A contain the matrix L, while the upper triangular part
/// of the input matrix is overwritten with L^T (the diagonal terms being identical for both L and L^T). If the matrix is not positive-definite
/// then the decomposition will fail, returning the error code ::Dom.
///
/// When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.
#[doc(alias = "gsl_linalg_cholesky_decomp")]
pub fn cholesky_decomp(a: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_cholesky_decomp(a.unwrap_unique()) })
}

/// This function factorizes the symmetric, positive-definite square matrix A into the Cholesky decomposition A = L L^T (or A = L L^H for
/// the complex case). On input, the values from the diagonal and lower-triangular part of the matrix A are used (the upper triangular part
/// is ignored). On output the diagonal and lower triangular part of the input matrix A contain the matrix L, while the upper triangular part
/// of the input matrix is overwritten with L^T (the diagonal terms being identical for both L and L^T). If the matrix is not positive-definite
/// then the decomposition will fail, returning the error code ::Dom.
///
/// When testing whether a matrix is positive-definite, disable the error handler first to avoid triggering an error.
#[doc(alias = "gsl_linalg_complex_cholesky_decomp")]
pub fn complex_cholesky_decomp(a: &mut ::MatrixComplexF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_complex_cholesky_decomp(a.unwrap_unique()) })
}

/// This function solves the system A x = b using the Cholesky decomposition of A held in the matrix cholesky which must have been previously
/// computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp.
#[doc(alias = "gsl_linalg_cholesky_solve")]
pub fn cholesky_solve(cholesky: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_solve(
            cholesky.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the system A x = b using the Cholesky decomposition of A held in the matrix cholesky which must have been previously
/// computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp.
#[doc(alias = "gsl_linalg_complex_cholesky_solve")]
pub fn complex_cholesky_solve(
    cholesky: &::MatrixComplexF64,
    b: &::VectorComplexF64,
    x: &mut ::VectorComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_cholesky_solve(
            cholesky.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the system A x = b in-place using the Cholesky decomposition of A held in the matrix cholesky which must have been
/// previously computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On input x should contain the right-hand side
/// b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_cholesky_svx")]
pub fn cholesky_svx(cholesky: &::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_svx(cholesky.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function solves the system A x = b in-place using the Cholesky decomposition of A held in the matrix cholesky which must have been
/// previously computed by gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On input x should contain the right-hand side
/// b, which is replaced by the solution on output.
#[doc(alias = "gsl_linalg_complex_cholesky_svx")]
pub fn complex_cholesky_svx(cholesky: &::MatrixComplexF64, x: &mut ::VectorComplexF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_cholesky_svx(cholesky.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function computes the inverse of a matrix from its Cholesky decomposition cholesky, which must have been previously computed by
/// gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On output, the inverse is stored in-place in cholesky.
#[doc(alias = "gsl_linalg_cholesky_invert")]
pub fn cholesky_invert(cholesky: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_cholesky_invert(cholesky.unwrap_unique()) })
}

/// This function computes the inverse of a matrix from its Cholesky decomposition cholesky, which must have been previously computed by
/// gsl_linalg_cholesky_decomp or gsl_linalg_complex_cholesky_decomp. On output, the inverse is stored in-place in cholesky.
#[doc(alias = "gsl_linalg_complex_cholesky_invert")]
pub fn complex_cholesky_invert(cholesky: &mut ::MatrixComplexF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_complex_cholesky_invert(cholesky.unwrap_unique()) })
}

/// This function factorizes the symmetric square matrix A into the symmetric tridiagonal decomposition Q T Q^T. On output the diagonal and
/// subdiagonal part of the input matrix A contain the tridiagonal matrix T. The remaining lower triangular part of the input matrix contains
/// the Householder vectors which, together with the Householder coefficients tau, encode the orthogonal matrix Q. This storage scheme is
/// the same as used by LAPACK. The upper triangular part of A is not referenced.
#[doc(alias = "gsl_linalg_symmtd_decomp")]
pub fn symmtd_decomp(a: &mut ::MatrixF64, tau: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_symmtd_decomp(a.unwrap_unique(), tau.unwrap_unique()) })
}

/// This function unpacks the encoded symmetric tridiagonal decomposition (A, tau) obtained from gsl_linalg_symmtd_decomp into the orthogonal
/// matrix Q, the vector of diagonal elements diag and the vector of subdiagonal elements subdiag.
#[doc(alias = "gsl_linalg_symmtd_unpack")]
pub fn symmtd_unpack(
    a: &::MatrixF64,
    tau: &::VectorF64,
    q: &mut ::MatrixF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_symmtd_unpack(
            a.unwrap_shared(),
            tau.unwrap_shared(),
            q.unwrap_unique(),
            diag.unwrap_unique(),
            subdiag.unwrap_unique(),
        )
    })
}

/// This function unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition (A, tau) obtained from
/// gsl_linalg_symmtd_decomp into the vectors diag and subdiag.
#[doc(alias = "gsl_linalg_symmtd_unpack_T")]
pub fn symmtd_unpack_T(
    a: &::MatrixF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_symmtd_unpack_T(
            a.unwrap_shared(),
            diag.unwrap_unique(),
            subdiag.unwrap_unique(),
        )
    })
}

/// This function factorizes the hermitian matrix A into the symmetric tridiagonal decomposition U T U^T. On output the real parts of the
/// diagonal and subdiagonal part of the input matrix A contain the tridiagonal matrix T. The remaining lower triangular part of the input
/// matrix contains the Householder vectors which, together with the Householder coefficients tau, encode the unitary matrix U. This storage
/// scheme is the same as used by LAPACK. The upper triangular part of A and imaginary parts of the diagonal are not referenced.
#[doc(alias = "gsl_linalg_hermtd_decomp")]
pub fn hermtd_decomp(a: &mut ::MatrixComplexF64, tau: &mut ::VectorComplexF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_hermtd_decomp(a.unwrap_unique(), tau.unwrap_unique()) })
}

/// This function unpacks the encoded tridiagonal decomposition (A, tau) obtained from gsl_linalg_hermtd_decomp into the unitary matrix U,
/// the real vector of diagonal elements diag and the real vector of subdiagonal elements subdiag.
#[doc(alias = "gsl_linalg_hermtd_unpack")]
pub fn hermtd_unpack(
    a: &::MatrixComplexF64,
    tau: &::VectorComplexF64,
    u: &mut ::MatrixComplexF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_hermtd_unpack(
            a.unwrap_shared(),
            tau.unwrap_shared(),
            u.unwrap_unique(),
            diag.unwrap_unique(),
            subdiag.unwrap_unique(),
        )
    })
}

/// This function unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (A, tau) obtained from the
/// gsl_linalg_hermtd_decomp into the real vectors diag and subdiag.
#[doc(alias = "gsl_linalg_hermtd_unpack_T")]
pub fn hermtd_unpack_T(
    a: &::MatrixComplexF64,
    diag: &mut ::VectorF64,
    subdiag: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_hermtd_unpack_T(
            a.unwrap_shared(),
            diag.unwrap_unique(),
            subdiag.unwrap_unique(),
        )
    })
}

/// This function computes the Hessenberg decomposition of the matrix A by applying the similarity transformation H = U^T A U. On output, H
/// is stored in the upper portion of A. The information required to construct the matrix U is stored in the lower triangular portion of A.
/// U is a product of N - 2 Householder matrices. The Householder vectors are stored in the lower portion of A (below the subdiagonal) and
/// the Householder coefficients are stored in the vector tau. tau must be of length N.
#[doc(alias = "gsl_linalg_hessenberg_decomp")]
pub fn hessenberg_decomp(a: &mut ::MatrixF64, tau: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_hessenberg_decomp(a.unwrap_unique(), tau.unwrap_unique())
    })
}

/// This function constructs the orthogonal matrix U from the information stored in the Hessenberg matrix H along with the vector tau. H and
/// tau are outputs from gsl_linalg_hessenberg_decomp.
#[doc(alias = "gsl_linalg_hessenberg_unpack")]
pub fn hessenberg_unpack(h: &mut ::MatrixF64, tau: &mut ::VectorF64, u: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_hessenberg_unpack(h.unwrap_unique(), tau.unwrap_unique(), u.unwrap_unique())
    })
}

/// This function is similar to gsl_linalg_hessenberg_unpack, except it accumulates the matrix U into V, so that V' = VU. The matrix V must
/// be initialized prior to calling this function. Setting V to the identity matrix provides the same result as gsl_linalg_hessenberg_unpack.
/// If H is order N, then V must have N columns but may have any number of rows.
#[doc(alias = "gsl_linalg_hessenberg_unpack_accum")]
pub fn hessenberg_unpack_accum(
    h: &mut ::MatrixF64,
    tau: &mut ::VectorF64,
    v: &mut ::MatrixF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_hessenberg_unpack_accum(
            h.unwrap_unique(),
            tau.unwrap_unique(),
            v.unwrap_unique(),
        )
    })
}

/// This function sets the lower triangular portion of H, below the subdiagonal, to zero. It is useful for clearing out the Householder
/// vectors after calling gsl_linalg_hessenberg_decomp.
#[doc(alias = "gsl_linalg_hessenberg_set_zero")]
pub fn hessenberg_set_zero(h: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_hessenberg_set_zero(h.unwrap_unique()) })
}

/// This function computes the Hessenberg-Triangular decomposition of the matrix pair (A, B). On output, H is stored in A, and R is stored
/// in B. If U and V are provided (they may be null), the similarity transformations are stored in them. Additional workspace of length N
/// is needed in work.
#[doc(alias = "gsl_linalg_hesstri_decomp")]
pub fn hesstri_decomp(
    a: &mut ::MatrixF64,
    b: &mut ::MatrixF64,
    u: &mut ::MatrixF64,
    v: &mut ::MatrixF64,
    work: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_hesstri_decomp(
            a.unwrap_unique(),
            b.unwrap_unique(),
            u.unwrap_unique(),
            v.unwrap_unique(),
            work.unwrap_unique(),
        )
    })
}

/// This function factorizes the M-by-N matrix A into bidiagonal form U B V^T. The diagonal and superdiagonal of the matrix B are stored in
/// the diagonal and superdiagonal of A. The orthogonal matrices U and V are stored as compressed Householder vectors in the remaining elements
/// of A. The Householder coefficients are stored in the vectors tau_U and tau_V. The length of tau_U must equal the number of elements in
/// the diagonal of A and the length of tau_V should be one element shorter.
#[doc(alias = "gsl_linalg_bidiag_decomp")]
pub fn bidiag_decomp(
    a: &mut ::MatrixF64,
    tau_u: &mut ::VectorF64,
    tau_v: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_bidiag_decomp(
            a.unwrap_unique(),
            tau_u.unwrap_unique(),
            tau_v.unwrap_unique(),
        )
    })
}

/// This function unpacks the bidiagonal decomposition of A produced by gsl_linalg_bidiag_decomp, (A, tau_U, tau_V) into the separate orthogonal
/// matrices U, V and the diagonal vector diag and superdiagonal superdiag. Note that U is stored as a compact M-by-N orthogonal matrix satisfying
/// U^T U = I for efficiency.
#[doc(alias = "gsl_linalg_bidiag_unpack")]
pub fn bidiag_unpack(
    a: &mut ::MatrixF64,
    tau_u: &::VectorF64,
    u: &mut ::MatrixF64,
    tau_v: &::VectorF64,
    v: &mut ::MatrixF64,
    diag: &mut ::VectorF64,
    superdiag: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_bidiag_unpack(
            a.unwrap_unique(),
            tau_u.unwrap_shared(),
            u.unwrap_unique(),
            tau_v.unwrap_shared(),
            v.unwrap_unique(),
            diag.unwrap_unique(),
            superdiag.unwrap_unique(),
        )
    })
}

/// This function unpacks the bidiagonal decomposition of A produced by gsl_linalg_bidiag_decomp, (A, tau_U, tau_V) into the separate orthogonal
/// matrices U, V and the diagonal vector diag and superdiagonal superdiag. The matrix U is stored in-place in A.
#[doc(alias = "gsl_linalg_bidiag_unpack2")]
pub fn bidiag_unpack2(
    a: &mut ::MatrixF64,
    tau_u: &mut ::VectorF64,
    tau_v: &mut ::VectorF64,
    v: &mut ::MatrixF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_bidiag_unpack2(
            a.unwrap_unique(),
            tau_u.unwrap_unique(),
            tau_v.unwrap_unique(),
            v.unwrap_unique(),
        )
    })
}

/// This function unpacks the diagonal and superdiagonal of the bidiagonal decomposition of A from gsl_linalg_bidiag_decomp, into the diagonal
/// vector diag and superdiagonal vector superdiag.
#[doc(alias = "gsl_linalg_bidiag_unpack_B")]
pub fn bidiag_unpack_B(
    a: &::MatrixF64,
    diag: &mut ::VectorF64,
    superdiag: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_bidiag_unpack_B(
            a.unwrap_shared(),
            diag.unwrap_unique(),
            superdiag.unwrap_unique(),
        )
    })
}

/// This function prepares a Householder transformation P = I - \tau v v^T which can be used to zero all the elements of the input vector except
/// the first. On output the transformation is stored in the vector v and the scalar \tau is returned.
#[doc(alias = "gsl_linalg_householder_transform")]
pub fn householder_transform(v: &mut ::VectorF64) -> f64 {
    unsafe { sys::gsl_linalg_householder_transform(v.unwrap_unique()) }
}

/// This function prepares a Householder transformation P = I - \tau v v^T which can be used to zero all the elements of the input vector except
/// the first. On output the transformation is stored in the vector v and the scalar \tau is returned.
#[doc(alias = "gsl_linalg_complex_householder_transform")]
pub fn complex_householder_transform(v: &mut ::VectorComplexF64) -> ::ComplexF64 {
    unsafe {
        ::std::mem::transmute(sys::gsl_linalg_complex_householder_transform(
            v.unwrap_unique(),
        ))
    }
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the left-hand side of the matrix A. On output
/// the result P A is stored in A.
#[doc(alias = "gsl_linalg_householder_hm")]
pub fn householder_hm(tau: f64, v: &::VectorF64, a: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_householder_hm(tau, v.unwrap_shared(), a.unwrap_unique())
    })
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the left-hand side of the matrix A. On output
/// the result P A is stored in A.
#[doc(alias = "gsl_linalg_complex_householder_hm")]
pub fn complex_householder_hm(
    tau: &::ComplexF64,
    v: &::VectorComplexF64,
    a: &mut ::MatrixComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_householder_hm(
            ::std::mem::transmute(*tau),
            v.unwrap_shared(),
            a.unwrap_unique(),
        )
    })
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the right-hand side of the matrix A. On output
/// the result A P is stored in A.
#[doc(alias = "gsl_linalg_householder_mh")]
pub fn householder_mh(tau: f64, v: &::VectorF64, a: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_householder_mh(tau, v.unwrap_shared(), a.unwrap_unique())
    })
}

/// This function applies the Householder matrix P defined by the scalar tau and the vector v to the right-hand side of the matrix A. On output
/// the result A P is stored in A.
#[doc(alias = "gsl_linalg_complex_householder_mh")]
pub fn complex_householder_mh(
    tau: &::ComplexF64,
    v: &::VectorComplexF64,
    a: &mut ::MatrixComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_householder_mh(
            ::std::mem::transmute(*tau),
            v.unwrap_shared(),
            a.unwrap_unique(),
        )
    })
}

/// This function applies the Householder transformation P defined by the scalar tau and the vector v to the vector w. On output the result P
/// w is stored in w.
#[doc(alias = "gsl_linalg_householder_hv")]
pub fn householder_hv(tau: f64, v: &::VectorF64, w: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_householder_hv(tau, v.unwrap_shared(), w.unwrap_unique())
    })
}

/// This function applies the Householder transformation P defined by the scalar tau and the vector v to the vector w. On output the result P
/// w is stored in w.
#[doc(alias = "gsl_linalg_complex_householder_hv")]
pub fn complex_householder_hv(
    tau: &::ComplexF64,
    v: &::VectorComplexF64,
    w: &mut ::VectorComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_householder_hv(
            ::std::mem::transmute(*tau),
            v.unwrap_shared(),
            w.unwrap_unique(),
        )
    })
}

/// This function solves the system A x = b directly using Householder transformations. On output the solution is stored in x and b is not
/// modified. The matrix A is destroyed by the Householder transformations.
#[doc(alias = "gsl_linalg_HH_solve")]
pub fn HH_solve(mut a: ::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_HH_solve(a.unwrap_unique(), b.unwrap_shared(), x.unwrap_unique())
    })
}

/// This function solves the system A x = b in-place using Householder transformations. On input x should contain the right-hand side b,
/// which is replaced by the solution on output. The matrix A is destroyed by the Householder transformations.
#[doc(alias = "gsl_linalg_HH_svx")]
pub fn HH_svx(mut a: ::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_HH_svx(a.unwrap_unique(), x.unwrap_unique()) })
}

/// This function solves the general N-by-N system A x = b where A is tridiagonal (N >= 2). The super-diagonal and sub-diagonal vectors
/// e and f must be one element shorter than the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0   0  )
///     ( f_0 d_1 e_1  0  )
///     (  0  f_1 d_2 e_2 )
///     (  0   0  f_2 d_3 )
/// ```
#[doc(alias = "gsl_linalg_solve_tridiag")]
pub fn solve_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    f: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_solve_tridiag(
            diag.unwrap_shared(),
            e.unwrap_shared(),
            f.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the general N-by-N system A x = b where A is symmetric tridiagonal (N >= 2). The off-diagonal vector e must be one
/// element shorter than the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0   0  )
///     ( e_0 d_1 e_1  0  )
///     (  0  e_1 d_2 e_2 )
///     (  0   0  e_2 d_3 )
/// ```
#[doc(alias = "gsl_linalg_solve_symm_tridiag")]
pub fn solve_symm_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_solve_symm_tridiag(
            diag.unwrap_shared(),
            e.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the general N-by-N system A x = b where A is cyclic tridiagonal (N >= 3). The cyclic super-diagonal and sub-diagonal
/// vectors e and f must have the same number of elements as the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0  f_3 )
///     ( f_0 d_1 e_1  0  )
///     (  0  f_1 d_2 e_2 )
///     ( e_3  0  f_2 d_3 )
/// ```
#[doc(alias = "gsl_linalg_solve_cyc_tridiag")]
pub fn solve_cyc_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    f: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_solve_cyc_tridiag(
            diag.unwrap_shared(),
            e.unwrap_shared(),
            f.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function solves the general N-by-N system A x = b where A is symmetric cyclic tridiagonal (N >= 3). The cyclic off-diagonal vector
/// e must have the same number of elements as the diagonal vector diag. The form of A for the 4-by-4 case is shown below,
///
/// ```text
/// A = ( d_0 e_0  0  e_3 )
///     ( e_0 d_1 e_1  0  )
///     (  0  e_1 d_2 e_2 )
///     ( e_3  0  e_2 d_3 )
/// ```
#[doc(alias = "gsl_linalg_solve_symm_cyc_tridiag")]
pub fn solve_symm_cyc_tridiag(
    diag: &::VectorF64,
    e: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_solve_symm_cyc_tridiag(
            diag.unwrap_shared(),
            e.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

/// This function replaces the matrix A with its balanced counterpart and stores the diagonal elements of the similarity transformation into
/// the vector D.
#[doc(alias = "gsl_linalg_balance_matrix")]
pub fn balance_matrix(a: &mut ::MatrixF64, d: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_balance_matrix(a.unwrap_unique(), d.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_decomp")]
pub fn pcholesky_decomp(a: &mut ::MatrixF64, p: &mut ::Permutation) -> Value {
    Value::from(unsafe { sys::gsl_linalg_pcholesky_decomp(a.unwrap_unique(), p.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_solve")]
pub fn pcholesky_solve(
    LDLT: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_pcholesky_solve(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_svx")]
pub fn pcholesky_svx(LDLT: &::MatrixF64, p: &::Permutation, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_pcholesky_svx(LDLT.unwrap_shared(), p.unwrap_shared(), x.unwrap_unique())
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_decomp2")]
pub fn pcholesky_decomp2(A: &mut ::MatrixF64, p: &mut ::Permutation, S: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_pcholesky_decomp2(A.unwrap_unique(), p.unwrap_unique(), S.unwrap_unique())
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_solve2")]
pub fn pcholesky_solve2(
    LDLT: &::MatrixF64,
    p: &::Permutation,
    S: &::VectorF64,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_pcholesky_solve2(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            S.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_svx2")]
pub fn pcholesky_svx2(
    LDLT: &::MatrixF64,
    p: &::Permutation,
    S: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_pcholesky_svx2(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            S.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_invert")]
pub fn pcholesky_invert(LDLT: &::MatrixF64, p: &::Permutation, Ainv: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_pcholesky_invert(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            Ainv.unwrap_unique(),
        )
    })
}

/// Returns `(Value, rcond)`.
#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_pcholesky_rcond")]
pub fn pcholesky_rcond(
    LDLT: &::MatrixF64,
    p: &::Permutation,
    work: &mut ::VectorF64,
) -> (Value, f64) {
    let mut rcond = 0.;
    let ret = unsafe {
        sys::gsl_linalg_pcholesky_rcond(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            &mut rcond,
            work.unwrap_unique(),
        )
    };
    (Value::from(ret), rcond)
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_mcholesky_decomp")]
pub fn mcholesky_decomp(A: &mut ::MatrixF64, p: &mut ::Permutation, E: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_mcholesky_decomp(A.unwrap_unique(), p.unwrap_unique(), E.unwrap_unique())
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_mcholesky_solve")]
pub fn mcholesky_solve(
    LDLT: &::MatrixF64,
    p: &::Permutation,
    b: &::VectorF64,
    x: &mut ::VectorF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_mcholesky_solve(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_mcholesky_svx")]
pub fn mcholesky_svx(LDLT: &::MatrixF64, p: &::Permutation, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_mcholesky_svx(LDLT.unwrap_shared(), p.unwrap_shared(), x.unwrap_unique())
    })
}

/// Returns `(Value, rcond)`.
#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_mcholesky_rcond")]
pub fn mcholesky_rcond(
    LDLT: &::MatrixF64,
    p: &::Permutation,
    work: &mut ::VectorF64,
) -> (Value, f64) {
    let mut rcond = 0.;
    let ret = unsafe {
        sys::gsl_linalg_mcholesky_rcond(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            &mut rcond,
            work.unwrap_unique(),
        )
    };
    (Value::from(ret), rcond)
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_mcholesky_invert")]
pub fn mcholesky_invert(LDLT: &::MatrixF64, p: &::Permutation, Ainv: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_mcholesky_invert(
            LDLT.unwrap_shared(),
            p.unwrap_shared(),
            Ainv.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_cholesky_band_decomp")]
pub fn cholesky_band_decomp(A: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_cholesky_band_decomp(A.unwrap_unique()) })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_cholesky_band_solve")]
pub fn cholesky_band_solve(LLT: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_band_solve(
            LLT.unwrap_shared(),
            b.unwrap_shared(),
            x.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_cholesky_band_svx")]
pub fn cholesky_band_svx(LLT: &::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_band_svx(LLT.unwrap_shared(), x.unwrap_unique())
    })
}

#[cfg(feature = "v2_7")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_7")))]
#[doc(alias = "gsl_linalg_cholesky_band_solvem")]
pub fn cholesky_band_solvem(LLT: &::MatrixF64, B: &::MatrixF64, X: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_band_solvem(
            LLT.unwrap_shared(),
            B.unwrap_shared(),
            X.unwrap_unique(),
        )
    })
}

#[cfg(feature = "v2_7")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_7")))]
#[doc(alias = "gsl_linalg_cholesky_band_svxm")]
pub fn cholesky_band_svxm(LLT: &::MatrixF64, X: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_band_svxm(LLT.unwrap_shared(), X.unwrap_unique())
    })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_cholesky_band_invert")]
pub fn cholesky_band_invert(LLT: &::MatrixF64, Ainv: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_band_invert(LLT.unwrap_shared(), Ainv.unwrap_unique())
    })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_cholesky_band_unpack")]
pub fn cholesky_band_unpack(LLT: &::MatrixF64, L: &mut ::MatrixF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_cholesky_band_unpack(LLT.unwrap_shared(), L.unwrap_unique())
    })
}

/// Returns `(Value, rcond)`.
#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_cholesky_band_rcond")]
pub fn cholesky_band_rcond(LLT: &::MatrixF64, work: &mut ::VectorF64) -> (Value, f64) {
    let mut rcond = 0.;
    let ret = unsafe {
        sys::gsl_linalg_cholesky_band_rcond(LLT.unwrap_shared(), &mut rcond, work.unwrap_unique())
    };
    (Value::from(ret), rcond)
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_decomp")]
pub fn ldlt_decomp(A: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_ldlt_decomp(A.unwrap_unique()) })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_solve")]
pub fn ldlt_solve(LDLT: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_ldlt_solve(LDLT.unwrap_shared(), b.unwrap_shared(), x.unwrap_unique())
    })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_svx")]
pub fn ldlt_svx(LDLT: &::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_ldlt_svx(LDLT.unwrap_shared(), x.unwrap_unique()) })
}

/// Returns `(Value, rcond)`.
#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_rcond")]
pub fn ldlt_rcond(LDLT: &::MatrixF64, work: &mut ::VectorF64) -> (Value, f64) {
    let mut rcond = 0.;
    let ret = unsafe {
        sys::gsl_linalg_ldlt_rcond(LDLT.unwrap_shared(), &mut rcond, work.unwrap_unique())
    };
    (Value::from(ret), rcond)
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_band_decomp")]
pub fn ldlt_band_decomp(A: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_ldlt_band_decomp(A.unwrap_unique()) })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_band_solve")]
pub fn ldlt_band_solve(LDLT: &::MatrixF64, b: &::VectorF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_ldlt_band_solve(LDLT.unwrap_shared(), b.unwrap_shared(), x.unwrap_unique())
    })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_band_svx")]
pub fn ldlt_band_svx(LDLT: &::MatrixF64, x: &mut ::VectorF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_ldlt_band_svx(LDLT.unwrap_shared(), x.unwrap_unique()) })
}

#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_band_unpack")]
pub fn ldlt_band_unpack(LDLT: &::MatrixF64, L: &mut ::MatrixF64, D: &mut ::VectorF64) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_ldlt_band_unpack(LDLT.unwrap_shared(), L.unwrap_unique(), D.unwrap_unique())
    })
}

/// Returns `(Value, rcond)`.
#[cfg(feature = "v2_6")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_6")))]
#[doc(alias = "gsl_linalg_ldlt_band_rcond")]
pub fn ldlt_band_rcond(LDLT: &::MatrixF64, work: &mut ::VectorF64) -> (Value, f64) {
    let mut rcond = 0.;
    let ret = unsafe {
        sys::gsl_linalg_ldlt_band_rcond(LDLT.unwrap_shared(), &mut rcond, work.unwrap_unique())
    };
    (Value::from(ret), rcond)
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_tri_upper_invert")]
pub fn tri_upper_invert(T: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_tri_upper_invert(T.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_tri_lower_invert")]
pub fn tri_lower_invert(T: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_tri_lower_invert(T.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_tri_upper_unit_invert")]
pub fn tri_upper_unit_invert(T: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_tri_upper_unit_invert(T.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_tri_lower_unit_invert")]
pub fn tri_lower_unit_invert(T: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_tri_lower_unit_invert(T.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_complex_tri_invert")]
pub fn tri_invert(
    Uplo: enums::CblasUplo,
    Diag: enums::CblasDiag,
    T: &mut ::MatrixComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_tri_invert(Uplo.into(), Diag.into(), T.unwrap_unique())
    })
}

#[doc(alias = "gsl_linalg_complex_tri_invert")]
pub fn complex_tri_invert(
    Uplo: enums::CblasUplo,
    Diag: enums::CblasDiag,
    T: &mut ::MatrixComplexF64,
) -> Value {
    Value::from(unsafe {
        sys::gsl_linalg_complex_tri_invert(Uplo.into(), Diag.into(), T.unwrap_unique())
    })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_tri_LTL")]
pub fn tri_LTL(L: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_tri_LTL(L.unwrap_unique()) })
}

#[cfg(feature = "v2_2")]
#[cfg_attr(feature = "dox", doc(cfg(feature = "v2_2")))]
#[doc(alias = "gsl_linalg_tri_UL")]
pub fn tri_UL(LU: &mut ::MatrixF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_tri_UL(LU.unwrap_unique()) })
}

#[doc(alias = "gsl_linalg_complex_tri_LHL")]
pub fn complex_tri_LHL(L: &mut ::MatrixComplexF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_complex_tri_LHL(L.unwrap_unique()) })
}

#[doc(alias = "gsl_linalg_complex_tri_UL")]
pub fn complex_tri_UL(LU: &mut ::MatrixComplexF64) -> Value {
    Value::from(unsafe { sys::gsl_linalg_complex_tri_UL(LU.unwrap_unique()) })
}

/// Returns `(c, s)`.
#[doc(alias = "gsl_linalg_givens")]
pub fn givens(a: f64, b: f64) -> (f64, f64) {
    let mut c = 0.;
    let mut s = 0.;
    unsafe { sys::gsl_linalg_givens(a, b, &mut c, &mut s) };
    (c, s)
}

#[doc(alias = "gsl_linalg_givens_gv")]
pub fn givens_gv(v: &mut ::VectorF64, i: usize, j: usize, c: f64, s: f64) {
    unsafe { sys::gsl_linalg_givens_gv(v.unwrap_unique(), i, j, c, s) }
}