1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
//
// A rust binding for the GSL library by Guillaume Gomez (guillaume1.gomez@gmail.com)
//

/*!
# Matrices

Matrices are defined by a gsl_matrix structure which describes a generalized slice of a block. Like a vector it represents a set of
elements in an area of memory, but uses two indices instead of one.

The gsl_matrix structure contains six components, the two dimensions of the matrix, a physical dimension, a pointer to the memory where
the elements of the matrix are stored, data, a pointer to the block owned by the matrix block, if any, and an ownership flag, owner. The
physical dimension determines the memory layout and can differ from the matrix dimension to allow the use of submatrices. The gsl_matrix
structure is very simple and looks like this,

```C
typedef struct
{
  size_t size1;
  size_t size2;
  size_t tda;
  double * data;
  gsl_block * block;
  int owner;
} gsl_matrix;
```

Matrices are stored in row-major order, meaning that each row of elements forms a contiguous block in memory. This is the standard
“C-language ordering” of two-dimensional arrays. Note that FORTRAN stores arrays in column-major order. The number of rows is size1. The
range of valid row indices runs from 0 to size1-1. Similarly size2 is the number of columns. The range of valid column indices runs from
0 to size2-1. The physical row dimension tda, or trailing dimension, specifies the size of a row of the matrix as laid out in memory.

For example, in the following matrix size1 is 3, size2 is 4, and tda is 8. The physical memory layout of the matrix begins in the top
left hand-corner and proceeds from left to right along each row in turn.

00 01 02 03 XX XX XX XX
10 11 12 13 XX XX XX XX
20 21 22 23 XX XX XX XX

Each unused memory location is represented by “XX”. The pointer data gives the location of the first element of the matrix in memory. The
pointer block stores the location of the memory block in which the elements of the matrix are located (if any). If the matrix owns this
block then the owner field is set to one and the block will be deallocated when the matrix is freed. If the matrix is only a slice of a
block owned by another object then the owner field is zero and any underlying block will not be freed.

## References and Further Reading

The block, vector and matrix objects in GSL follow the valarray model of C++. A description of this model can be found in the following
reference,

B. Stroustrup, The C++ Programming Language (3rd Ed), Section 22.4 Vector Arithmetic. Addison-Wesley 1997, ISBN 0-201-88954-4.
!*/

use crate::paste::paste;
use crate::Value;
use ffi::{self, FFI};
use std::fmt::{self, Debug, Formatter};
use std::marker::PhantomData;
use types::{VectorF32, VectorF64, VectorI32, VectorU32};
use types::{VectorF32View, VectorF64View, VectorI32View, VectorU32View};

macro_rules! gsl_matrix {
    ($rust_name:ident, $name:ident, $rust_ty:ident, $vec_name:ident, $vec_c_name:ident) => (
paste! {
pub struct $rust_name {
    mat: *mut sys::$name,
    can_free: bool,
}

// macro_rules! lol {
//     ($doc:expr, $($t:tt)*) => (
//         #[doc(alias = $doc)]
//         $($t)*
//     );
// }

impl $rust_name {
    #[doc = "Creates a new " $rust_name " with all elements set to zero"]
    #[doc(alias = $name _calloc)]
    pub fn new(n1: usize, n2: usize) -> Option<$rust_name> {
        let tmp = unsafe { sys::[<$name _calloc>](n1, n2) };

        if tmp.is_null() {
            None
        } else {
            Some(Self::wrap(tmp))
        }
    }

    /// This function returns the (i,j)-th element of the matrix.
    /// If y or x lie outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is
    /// invoked and 0 is returned.
    #[doc(alias = $name _get)]
    pub fn get(&self, y: usize, x: usize) -> $rust_ty {
        unsafe { sys::[<$name _get>](self.unwrap_shared(), y, x) }
    }

    /// This function sets the value of the (i,j)-th element of the matrix to value.
    /// If y or x lies outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler
    /// is invoked.
    #[doc(alias = $name _set)]
    pub fn set(&mut self, y: usize, x: usize, value: $rust_ty) -> &$rust_name {
        unsafe { sys::[<$name _set>](self.unwrap_unique(), y, x, value) };
        self
    }

    /// This function sets all the elements of the matrix to the value x.
    #[doc(alias = $name _set_all)]
    pub fn set_all(&mut self, x: $rust_ty) -> &$rust_name {
        unsafe { sys::[<$name _set_all>](self.unwrap_unique(), x) };
        self
    }

    /// This function sets all the elements of the matrix to zero.
    #[doc(alias = $name _set_zero)]
    pub fn set_zero(&mut self) -> &$rust_name {
        unsafe { sys::[<$name _set_zero>](self.unwrap_unique()) };
        self
    }

    /// This function sets the elements of the matrix to the corresponding elements of the identity
    /// matrix, m(i,j) = \delta(i,j), i.e. a unit diagonal with all off-diagonal elements zero.
    /// This applies to both square and rectangular matrices.
    #[doc(alias = $name _set_identity)]
    pub fn set_identity(&mut self) -> &$rust_name {
        unsafe { sys::[<$name _set_identity>](self.unwrap_unique()) };
        self
    }

    /// This function copies the elements of the other matrix into the self matrix. The two matrices
    /// must have the same size.
    #[doc(alias = $name _memcpy)]
    pub fn copy_from(&mut self, other: &$rust_name) -> Value {
        Value::from(unsafe { sys::[<$name _memcpy>](self.unwrap_unique(), other.unwrap_shared()) })
    }

    /// This function copies the elements of the self matrix into the other matrix. The two matrices
    /// must have the same size.
    #[doc(alias = $name _memcpy)]
    pub fn copy_to(&self, other: &mut $rust_name) -> Value {
        Value::from(unsafe { sys::[<$name _memcpy>](other.unwrap_unique(), self.unwrap_shared()) })
    }

    /// This function exchanges the elements of the matrices self and other by copying. The two
    /// matrices must have the same size.
    #[doc(alias = $name _swap)]
    pub fn swap(&mut self, other: &mut $rust_name) -> Value {
        Value::from(unsafe { sys::[<$name _swap>](self.unwrap_unique(), other.unwrap_unique()) })
    }

    /// This function copies the elements of the y-th row of the matrix into the returned vector.
    #[doc(alias = $name _get_row)]
    pub fn get_row(&self, y: usize) -> Option<(Value, $vec_name)> {
        let tmp = unsafe { sys::[<$vec_c_name _alloc>](self.size2()) };

        if tmp.is_null() {
            None
        } else {
            let ret = unsafe { sys::[<$name _get_row>](tmp, self.unwrap_shared(), y) };

            Some((Value::from(ret), ffi::FFI::wrap(tmp)))
        }
    }

    /// This function copies the elements of the x-th column of the matrix into the returned vector.
    #[doc(alias = $name _get_col)]
    pub fn get_col(&self, x: usize) -> Option<(Value, $vec_name)> {
        let tmp = unsafe { sys::[<$vec_c_name _alloc>](self.size1()) };

        if tmp.is_null() {
            None
        } else {
            let ret = unsafe { sys::[<$name _get_col>](tmp, self.unwrap_shared(), x) };

            Some((Value::from(ret), ffi::FFI::wrap(tmp)))
        }
    }

    /// This function copies the elements of the vector v into the y-th row of the matrix.
    /// The length of the vector must be the same as the length of the row.
    #[doc(alias = $name _set_row)]
    pub fn set_row(&mut self, y: usize, v: &$vec_name) -> Value {
        Value::from(unsafe { sys::[<$name _set_row>](self.unwrap_unique(), y, v.unwrap_shared()) })
    }

    /// This function copies the elements of the vector v into the x-th column of the matrix.
    /// The length of the vector must be the same as the length of the column.
    #[doc(alias = $name _set_col)]
    pub fn set_col(&mut self, x: usize, v: &$vec_name) -> Value {
        Value::from(unsafe { sys::[<$name _set_col>](self.unwrap_unique(), x, v.unwrap_shared()) })
    }

    /// This function exchanges the y1-th and y2-th rows of the matrix in-place.
    #[doc(alias = $name _swap_rows)]
    pub fn swap_rows(&mut self, y1: usize, y2: usize) -> Value {
        Value::from(unsafe { sys::[<$name _swap_rows>](self.unwrap_unique(), y1, y2) })
    }

    /// This function exchanges the x1-th and x2-th columns of the matrix in-place.
    #[doc(alias = $name _swap_columns)]
    pub fn swap_columns(&mut self, x1: usize, x2: usize) -> Value {
        Value::from(unsafe { sys::[<$name _swap_columns>](self.unwrap_unique(), x1, x2) })
    }

    /// This function exchanges the i-th row and j-th column of the matrix in-place.
    /// The matrix must be square for this operation to be possible.
    #[doc(alias = $name _swap_row_col)]
    pub fn swap_row_col(&mut self, i: usize, j: usize) -> Value {
        Value::from(unsafe { sys::[<$name _swap_rowcol>](self.unwrap_unique(), i, j) })
    }

    /// This function returns the transpose of the matrix by copying the elements into it.
    /// This function works for all matrices provided that the dimensions of the matrix dest match
    /// the transposed dimensions of the matrix.
    #[doc(alias = $name _transpose_memcpy)]
    pub fn transpose_memcpy(&self) -> Option<(Value, $rust_name)> {
        let dest = unsafe { sys::[<$name _alloc>](self.size2(), self.size1()) };

        if dest.is_null() {
            None
        } else {
            let ret = unsafe { sys::[<$name _transpose_memcpy>](dest, self.unwrap_shared()) };

            Some((Value::from(ret), $rust_name::wrap(dest)))
        }
    }

    /// This function replaces the matrix m by its transpose by copying the elements of the matrix
    /// in-place. The matrix must be square for this operation to be possible.
    #[doc(alias = $name _transpose)]
    pub fn transpose(&mut self) -> Value {
        Value::from(unsafe { sys::[<$name _transpose>](self.unwrap_unique()) })
    }

    /// This function adds the elements of the other matrix to the elements of the self matrix.
    /// The result self(i,j) <- self(i,j) + other(i,j) is stored in self and other remains
    /// unchanged. The two matrices must have the same dimensions.
    #[doc(alias = $name _add)]
    pub fn add(&mut self, other: &$rust_name) -> Value {
        Value::from(unsafe { sys::[<$name _add>](self.unwrap_unique(), other.unwrap_shared()) })
    }

    /// This function subtracts the elements of the other matrix from the elements of the self
    /// matrix. The result self(i,j) <- self(i,j) - other(i,j) is stored in self and other remains
    /// unchanged. The two matrices must have the same dimensions.
    #[doc(alias = $name _sub)]
    pub fn sub(&mut self, other: &$rust_name) -> Value {
        Value::from(unsafe { sys::[<$name _sub>](self.unwrap_unique(), other.unwrap_shared()) })
    }

    /// This function multiplies the elements of the self matrix by the elements of the other
    /// matrix. The result self(i,j) <- self(i,j) * other(i,j) is stored in self and other remains
    /// unchanged. The two matrices must have the same dimensions.
    #[doc(alias = $name _mul_elements)]
    pub fn mul_elements(&mut self, other: &$rust_name) -> Value {
        Value::from(unsafe {
            sys::[<$name _mul_elements>](self.unwrap_unique(), other.unwrap_shared())
        })
    }

    /// This function divides the elements of the self matrix by the elements of the other matrix.
    /// The result self(i,j) <- self(i,j) / other(i,j) is stored in self and other remains
    /// unchanged. The two matrices must have the same dimensions.
    #[doc(alias = $name _div_elements)]
    pub fn div_elements(&mut self, other: &$rust_name) -> Value {
        Value::from(unsafe {
            sys::[<$name _div_elements>](self.unwrap_unique(), other.unwrap_shared())
        })
    }

    /// This function multiplies the elements of the self matrix by the constant factor x. The
    /// result self(i,j) <- x self(i,j) is stored in self.
    #[doc(alias = $name _scale)]
    pub fn scale(&mut self, x: f64) -> Value {
        Value::from(unsafe { sys::[<$name _scale>](self.unwrap_unique(), x) })
    }

    /// This function adds the constant value x to the elements of the self matrix. The result
    /// self(i,j) <- self(i,j) + x is stored in self.
    #[doc(alias = $name _add_constant)]
    pub fn add_constant(&mut self, x: f64) -> Value {
        Value::from(unsafe { sys::[<$name _add_constant>](self.unwrap_unique(), x) })
    }

    #[doc(alias = $name _add_constant)]
    pub fn add_diagonal(&mut self, x: f64) -> Value {
        Value::from(unsafe { sys::[<$name _add_constant>](self.unwrap_unique(), x) })
    }

    /// This function returns the maximum value in the self matrix.
    #[doc(alias = $name _max)]
    pub fn max(&self) -> $rust_ty {
        unsafe { sys::[<$name _max>](self.unwrap_shared()) }
    }

    /// This function returns the minimum value in the self matrix.
    #[doc(alias = $name _min)]
    pub fn min(&self) -> $rust_ty {
        unsafe { sys::[<$name _min>](self.unwrap_shared()) }
    }

    /// This function returns the minimum and maximum values in the self matrix.
    #[doc(alias = $name _minmax)]
    pub fn minmax(&self) -> ($rust_ty, $rust_ty) {
        let mut min_out = 0 as _;
        let mut max_out = 0 as _;
        unsafe { sys::[<$name _minmax>](self.unwrap_shared(), &mut min_out, &mut max_out) };
        (min_out, max_out)
    }

    /// This function returns the indices of the maximum value in the self matrix. When there are
    /// several equal maximum elements then the first element found is returned, searching in
    /// row-major order.
    #[doc(alias = $name _max_index)]
    pub fn max_index(&self) -> (usize, usize) {
        let mut imax = 0;
        let mut jmax = 0;

        unsafe { sys::[<$name _max_index>](self.unwrap_shared(), &mut imax, &mut jmax) };
        (imax, jmax)
    }

    /// This function returns the indices of the minimum value in the self matrix. When there are
    /// several equal minimum elements then the first element found is returned, searching in row
    /// major order.
    #[doc(alias = $name _min_index)]
    pub fn min_index(&self) -> (usize, usize) {
        let mut imax = 0;
        let mut jmax = 0;

        unsafe { sys::[<$name _min_index>](self.unwrap_shared(), &mut imax, &mut jmax) };
        (imax, jmax)
    }

    /// This function returns the indices of the minimum and maximum values in the self matrix. When
    /// there are several equal minimum or maximum elements then the first elements found are
    /// returned, searching in row-major order.
    #[doc(alias = $name _minmax_index)]
    pub fn minmax_index(&self) -> (usize, usize, usize, usize) {
        let mut imin = 0;
        let mut jmin = 0;
        let mut imax = 0;
        let mut jmax = 0;

        unsafe {
            sys::[<$name _minmax_index>](
                self.unwrap_shared(),
                &mut imin,
                &mut jmin,
                &mut imax,
                &mut jmax,
            )
        };
        (imin, jmin, imax, jmax)
    }

    /// This function returns true if all the elements of the self matrix are stricly zero.
    #[doc(alias = $name _isnull)]
    pub fn is_null(&self) -> bool {
        unsafe { sys::[<$name _isnull>](self.unwrap_shared()) == 1 }
    }

    /// This function returns true if all the elements of the self matrix are stricly positive.
    #[doc(alias = $name _ispos)]
    pub fn is_pos(&self) -> bool {
        unsafe { sys::[<$name _ispos>](self.unwrap_shared()) == 1 }
    }

    /// This function returns true if all the elements of the self matrix are stricly negative.
    #[doc(alias = $name _isneg)]
    pub fn is_neg(&self) -> bool {
        unsafe { sys::[<$name _isneg>](self.unwrap_shared()) == 1 }
    }

    /// This function returns true if all the elements of the self matrix are stricly non-negative.
    #[doc(alias = $name _isnonneg)]
    pub fn is_non_neg(&self) -> bool {
        unsafe { sys::[<$name _isnonneg>](self.unwrap_shared()) == 1 }
    }

    /// This function returns true if all elements of the two matrix are equal.
    #[doc(alias = $name _equal)]
    pub fn equal(&self, other: &$rust_name) -> bool {
        unsafe { sys::[<$name _equal>](self.unwrap_shared(), other.unwrap_shared()) == 1 }
    }

    #[doc(alias = $name _row)]
    pub fn row<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, i: usize, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _row>](self.unwrap_unique(), i) }, f)
    }

    #[doc(alias = $name _column)]
    pub fn column<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, j: usize, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _column>](self.unwrap_unique(), j) }, f)
    }

    #[doc(alias = $name _diagonal)]
    pub fn diagonal<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _diagonal>](self.unwrap_unique()) }, f)
    }

    #[doc(alias = $name _subdiagonal)]
    pub fn subdiagonal<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, k: usize, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _subdiagonal>](self.unwrap_unique(), k) }, f)
    }

    #[doc(alias = $name _superdiagonal)]
    pub fn superdiagonal<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, k: usize, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _superdiagonal>](self.unwrap_unique(), k) }, f)
    }

    #[doc(alias = $name _subrow)]
    pub fn subrow<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, i: usize, offset: usize, n: usize, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _subrow>](self.unwrap_unique(), i, offset, n) }, f)
    }

    #[doc(alias = $name _subcolumn)]
    pub fn subcolumn<F: FnOnce(Option<[<$vec_name View>]>)>(&mut self, i: usize, offset: usize, n: usize, f: F) {
        [<$vec_name View>]::wrap(unsafe { sys::[<$name _subcolumn>](self.unwrap_unique(), i, offset, n) }, f)
    }

    #[doc(alias = $name _submatrix)]
    pub fn submatrix<'a>(
        &'a mut self,
        k1: usize,
        k2: usize,
        n1: usize,
        n2: usize,
    ) -> [<$rust_name View>]<'a> {
        [<$rust_name View>]::from_matrix(self, k1, k2, n1, n2)
    }

    pub fn size1(&self) -> usize {
        if self.unwrap_shared().is_null() {
            0
        } else {
            unsafe { (*self.unwrap_shared()).size1 }
        }
    }

    pub fn size2(&self) -> usize {
        if self.unwrap_shared().is_null() {
            0
        } else {
            unsafe { (*self.unwrap_shared()).size2 }
        }
    }

    pub fn clone(&self) -> Option<Self> {
        if self.unwrap_shared().is_null() {
            None
        } else {
            match Self::new(self.size1(), self.size2()) {
                Some(mut m) => {
                    m.copy_from(self);
                    Some(m)
                }
                None => None,
            }
        }
    }

    #[doc(hidden)]
    pub fn is_ptr_null(&self) -> bool {
        self.unwrap_shared().is_null()
    }
}

impl Drop for $rust_name {
    #[doc(alias = $name _free)]
    fn drop(&mut self) {
        if self.can_free {
            unsafe { sys::[<$name _free>](self.mat) };
            self.mat = ::std::ptr::null_mut();
        }
    }
}

impl FFI<sys::$name> for $rust_name {
    fn wrap(mat: *mut sys::$name) -> Self {
        Self {
            mat,
            can_free: true,
        }
    }

    fn soft_wrap(mat: *mut sys::$name) -> Self {
        Self {
            mat,
            can_free: false,
        }
    }

    fn unwrap_shared(&self) -> *const sys::$name {
        self.mat as *const _
    }

    fn unwrap_unique(&mut self) -> *mut sys::$name {
        self.mat
    }
}

impl Debug for $rust_name {
    #[allow(unused_must_use)]
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        let ptr = self.unwrap_shared();
        if ptr.is_null() {
            write!(f, "<null>")
        } else {
            let size1 = self.size1();
            let size2 = self.size2();
            for y in 0..size1 {
                write!(f, "[");
                for x in 0..size2 {
                    if x < size2 - 1 {
                        write!(f, "{}, ", self.get(y, x));
                    } else {
                        write!(f, "{}", self.get(y, x));
                    }
                }
                if y < size1 - 1 {
                    write!(f, "]\n");
                }
            }
            write!(f, "]")
        }
    }
}

pub struct [<$rust_name View>]<'a> {
    mat: sys::[<$name _view>],
    #[allow(dead_code)]
    phantom: PhantomData<&'a ()>,
}

impl<'a> [<$rust_name View>]<'a> {
    /// These functions return a matrix view of a submatrix of the matrix m. The upper-left element
    /// of the submatrix is the element (k1,k2) of the original matrix. The submatrix has n1 rows
    /// and n2 columns. The physical number of columns in memory given by tda is unchanged.
    /// Mathematically, the (i,j)-th element of the new matrix is given by,
    ///
    /// m'(i,j) = m->data[(k1*m->tda + k2) + i*m->tda + j]
    ///
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    ///
    /// The data pointer of the returned matrix struct is set to null if the combined parameters
    /// (i,j,n1,n2,tda) overrun the ends of the original
    /// matrix.
    ///
    /// The new matrix view is only a view of the block underlying the existing matrix, m. The
    /// block containing the elements of m is not
    /// owned by the new matrix view. When the view goes out of scope the original matrix m and its
    /// block will continue to exist. The original memory can only be deallocated by freeing the
    /// original matrix. Of course, the original matrix should not be deallocated while the view
    /// is still in use.
    ///
    /// The function gsl_matrix_const_submatrix is equivalent to gsl_matrix_submatrix but can be
    /// used for matrices which are declared const.
    #[doc(alias = $name _submatrix)]
    pub fn from_matrix(
        m: &'a mut $rust_name,
        k1: usize,
        k2: usize,
        n1: usize,
        n2: usize,
    ) -> Self {
        unsafe {
            Self {
                mat: sys::[<$name _submatrix>](m.mat, k1, k2, n1, n2),
                phantom: PhantomData,
            }
        }
    }

    /// These functions return a matrix view of the array base. The matrix has n1 rows and n2
    /// columns. The physical number of columns in memory is also given by n2. Mathematically, the
    /// (i,j)-th element of the new matrix is given by,
    ///
    /// m'(i,j) = base[i*n2 + j]
    ///
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    ///
    /// The new matrix is only a view of the array base. When the view goes out of scope the
    /// original array base will continue to exist. The original memory can only be deallocated by
    /// freeing the original array. Of course, the original array should not be deallocated while
    /// the view is still in use.
    ///
    /// The function gsl_matrix_const_view_array is equivalent to gsl_matrix_view_array but can be
    /// used for matrices which are declared const.
    #[doc(alias = $name _view_array)]
    pub fn from_array(base: &'a mut [$rust_ty], n1: usize, n2: usize) -> Self {
        assert!(
            n1 * n2 <= base.len() as _,
            "n1 * n2 cannot be longer than base"
        );
        unsafe {
            Self {
                mat: sys::[<$name _view_array>](base.as_mut_ptr(), n1, n2),
                phantom: PhantomData,
            }
        }
    }

    /// These functions return a matrix view of the array base with a physical number of columns tda
    /// which may differ from the corresponding dimension of the matrix. The matrix has n1 rows and
    /// n2 columns, and the physical number of columns in memory is given by tda. Mathematically,
    /// the (i,j)-th element of the new matrix is given by,
    ///
    /// m'(i,j) = base[i*tda + j]
    ///
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    ///
    /// The new matrix is only a view of the array base. When the view goes out of scope the
    /// original array base will continue to exist. The original memory can only be deallocated by
    /// freeing the original array. Of course, the original array should not be deallocated while
    /// the view is still in use.
    ///
    /// The function gsl_matrix_const_view_array_with_tda is equivalent to
    /// gsl_matrix_view_array_with_tda but can be used for matrices which are declared const.
    #[doc(alias = $name _view_array_with_tda)]
    pub fn from_array_with_tda(base: &'a mut [$rust_ty], n1: usize, n2: usize, tda: usize) -> Self {
        unsafe {
            Self {
                mat: sys::[<$name _view_array_with_tda>](base.as_mut_ptr(), n1, n2, tda),
                phantom: PhantomData,
            }
        }
    }

    /// These functions return a matrix view of the vector v. The matrix has n1 rows and n2 columns.
    /// The vector must have unit stride. The physical number of columns in memory is also given by
    /// n2. Mathematically, the (i,j)-th element of the new matrix is given by,
    ///
    /// m'(i,j) = v->data[i*n2 + j]
    ///
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    ///
    /// The new matrix is only a view of the vector v. When the view goes out of scope the original
    /// vector v will continue to exist. The original memory can only be deallocated by freeing the
    /// original vector. Of course, the original vector should not be deallocated while the view
    /// is still in use.
    ///
    /// The function gsl_matrix_const_view_vector is equivalent to gsl_matrix_view_vector but can be
    /// used for matrices which are declared const.
    #[doc(alias = $name _view_vector)]
    pub fn from_vector(v: &'a mut $vec_name, n1: usize, n2: usize) -> Self {
        unsafe {
            Self {
                mat: sys::[<$name _view_vector>](v.unwrap_unique(), n1, n2),
                phantom: PhantomData,
            }
        }
    }

    /// These functions return a matrix view of the vector v with a physical number of columns tda
    /// which may differ from the corresponding matrix dimension. The vector must have unit stride.
    /// The matrix has n1 rows and n2 columns, and the physical number of columns in memory is given
    /// by tda. Mathematically, the (i,j)-th element of the new matrix is given by,
    ///
    /// m'(i,j) = v->data[i*tda + j]
    ///
    /// where the index i runs from 0 to n1-1 and the index j runs from 0 to n2-1.
    ///
    /// The new matrix is only a view of the vector v. When the view goes out of scope the original
    /// vector v will continue to exist. The original memory can only be deallocated by freeing the
    /// original vector. Of course, the original vector should not be deallocated while the view
    /// is still in use.
    ///
    /// The function gsl_matrix_const_view_vector_with_tda is equivalent to
    /// gsl_matrix_view_vector_with_tda but can be used for matrices which are declared const.
    #[doc(alias = $name _view_vector_with_tda)]
    pub fn from_vector_with_tda(v: &'a mut $vec_name, n1: usize, n2: usize, tda: usize) -> Self {
        unsafe {
            Self {
                mat: sys::[<$name _view_vector_with_tda>](v.unwrap_unique(), n1, n2, tda),
                phantom: PhantomData,
            }
        }
    }

    pub fn matrix<F: FnOnce(Option<&$rust_name>)>(&self, f: F) {
        let tmp = &self.mat.matrix;
        let tmp_mat = $rust_name::soft_wrap(tmp as *const _ as usize as *mut _);
        if tmp_mat.is_ptr_null() {
            f(None)
        } else {
            f(Some(&tmp_mat))
        }
    }

    pub fn matrix_mut<F: FnOnce(Option<&mut $rust_name>)>(&mut self, f: F) {
        let tmp = &mut self.mat.matrix;
        let mut tmp_mat = $rust_name::soft_wrap(tmp as *mut _);
        if tmp_mat.is_ptr_null() {
            f(None)
        } else {
            f(Some(&mut tmp_mat))
        }
    }
} // end of impl block
} // end of paste! block

    ); // end of the gsl_matrix macro
}

gsl_matrix!(
    MatrixF32,
    gsl_matrix_float,
    f32,
    VectorF32,
    gsl_vector_float
);
gsl_matrix!(MatrixF64, gsl_matrix, f64, VectorF64, gsl_vector);
gsl_matrix!(MatrixI32, gsl_matrix_int, i32, VectorI32, gsl_vector_int);
gsl_matrix!(MatrixU32, gsl_matrix_uint, u32, VectorU32, gsl_vector_uint);