logo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//! This module implements the JavaScript bigint primitive rust type.

use crate::{
    builtins::Number,
    gc::{empty_trace, Finalize, Trace},
    Context, JsValue,
};

use std::{
    convert::TryFrom,
    fmt::{self, Display},
    ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub},
    rc::Rc,
};

use num_integer::Integer;
use num_traits::pow::Pow;
use num_traits::{FromPrimitive, One, ToPrimitive, Zero};

/// The raw bigint type.
pub type RawBigInt = num_bigint::BigInt;

#[cfg(feature = "deser")]
use serde::{Deserialize, Serialize};

/// JavaScript bigint primitive rust type.
#[cfg_attr(feature = "deser", derive(Serialize, Deserialize))]
#[derive(Debug, Finalize, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct JsBigInt {
    inner: Rc<RawBigInt>,
}

// Safety: BigInt does not contain any objects which needs to be traced,
// so this is safe.
unsafe impl Trace for JsBigInt {
    empty_trace!();
}

impl JsBigInt {
    /// Create a new [`JsBigInt`].
    #[inline]
    pub fn new<T: Into<Self>>(value: T) -> Self {
        value.into()
    }

    /// Create a [`JsBigInt`] with value `0`.
    #[inline]
    pub fn zero() -> Self {
        Self {
            inner: Rc::new(RawBigInt::zero()),
        }
    }

    /// Check if is zero.
    #[inline]
    pub fn is_zero(&self) -> bool {
        self.inner.is_zero()
    }

    /// Create a [`JsBigInt`] with value `1`.
    #[inline]
    pub fn one() -> Self {
        Self {
            inner: Rc::new(RawBigInt::one()),
        }
    }

    /// Check if is one.
    #[inline]
    pub fn is_one(&self) -> bool {
        self.inner.is_one()
    }

    /// Convert bigint to string with radix.
    #[inline]
    pub fn to_string_radix(&self, radix: u32) -> String {
        self.inner.to_str_radix(radix)
    }

    /// Converts the BigInt to a f64 type.
    ///
    /// Returns `f64::INFINITY` if the BigInt is too big.
    #[inline]
    pub fn to_f64(&self) -> f64 {
        self.inner.to_f64().unwrap_or(f64::INFINITY)
    }

    /// Converts a string to a BigInt with the specified radix.
    #[inline]
    pub fn from_string_radix(buf: &str, radix: u32) -> Option<Self> {
        Some(Self {
            inner: Rc::new(RawBigInt::parse_bytes(buf.as_bytes(), radix)?),
        })
    }

    /// This function takes a string and conversts it to BigInt type.
    ///
    /// More information:
    ///  - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-stringtobigint
    #[inline]
    pub fn from_string(mut string: &str) -> Option<Self> {
        string = string.trim();

        if string.is_empty() {
            return Some(JsBigInt::zero());
        }

        let mut radix = 10;
        if string.starts_with("0b") || string.starts_with("0B") {
            radix = 2;
            string = &string[2..];
        } else if string.starts_with("0x") || string.starts_with("0X") {
            radix = 16;
            string = &string[2..];
        } else if string.starts_with("0o") || string.starts_with("0O") {
            radix = 8;
            string = &string[2..];
        }

        Self::from_string_radix(string, radix)
    }

    /// Checks for `SameValueZero` equality.
    ///
    /// More information:
    ///  - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-numeric-types-bigint-equal
    #[inline]
    pub fn same_value_zero(x: &Self, y: &Self) -> bool {
        // Return BigInt::equal(x, y)
        Self::equal(x, y)
    }

    /// Checks for `SameValue` equality.
    ///
    ///
    /// More information:
    ///  - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-numeric-types-bigint-sameValue
    #[inline]
    pub fn same_value(x: &Self, y: &Self) -> bool {
        // Return BigInt::equal(x, y)
        Self::equal(x, y)
    }

    /// Checks for mathematical equality.
    ///
    /// The abstract operation BigInt::equal takes arguments x (a `BigInt`) and y (a `BigInt`).
    /// It returns `true` if x and y have the same mathematical integer value and false otherwise.
    ///
    /// More information:
    ///  - [ECMAScript reference][spec]
    ///
    /// [spec]: https://tc39.es/ecma262/#sec-numeric-types-bigint-sameValueZero
    #[inline]
    pub fn equal(x: &Self, y: &Self) -> bool {
        x == y
    }

    #[inline]
    pub fn pow(x: &Self, y: &Self, context: &mut Context) -> Result<Self, JsValue> {
        let y = if let Some(y) = y.inner.to_biguint() {
            y
        } else {
            return Err(context.construct_range_error("BigInt negative exponent"));
        };

        let num_bits = (x.inner.bits() as f64
            * y.to_f64().expect("Unable to convert from BigUInt to f64"))
        .floor()
            + 1f64;

        if num_bits > 1_000_000_000f64 {
            return Err(context.construct_range_error("Maximum BigInt size exceeded"));
        }

        Ok(Self::new(x.inner.as_ref().clone().pow(y)))
    }

    #[inline]
    pub fn shift_right(x: &Self, y: &Self, context: &mut Context) -> Result<Self, JsValue> {
        if let Some(n) = y.inner.to_i32() {
            let inner = if n > 0 {
                x.inner.as_ref().clone().shr(n as usize)
            } else {
                x.inner.as_ref().clone().shl(n.abs() as usize)
            };

            Ok(Self::new(inner))
        } else {
            Err(context.construct_range_error("Maximum BigInt size exceeded"))
        }
    }

    #[inline]
    pub fn shift_left(x: &Self, y: &Self, context: &mut Context) -> Result<Self, JsValue> {
        if let Some(n) = y.inner.to_i32() {
            let inner = if n > 0 {
                x.inner.as_ref().clone().shl(n as usize)
            } else {
                x.inner.as_ref().clone().shr(n.abs() as usize)
            };

            Ok(Self::new(inner))
        } else {
            Err(context.construct_range_error("Maximum BigInt size exceeded"))
        }
    }

    /// Floored integer modulo.
    ///
    /// # Examples
    /// ```
    /// # use num_integer::Integer;
    /// assert_eq!((8).mod_floor(&3), 2);
    /// assert_eq!((8).mod_floor(&-3), -1);
    /// ```
    #[inline]
    pub fn mod_floor(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.mod_floor(&y.inner))
    }

    #[inline]
    pub fn add(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().add(y.inner.as_ref()))
    }

    #[inline]
    pub fn sub(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().sub(y.inner.as_ref()))
    }

    #[inline]
    pub fn mul(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().mul(y.inner.as_ref()))
    }

    #[inline]
    pub fn div(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().div(y.inner.as_ref()))
    }

    #[inline]
    pub fn rem(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().rem(y.inner.as_ref()))
    }

    #[inline]
    pub fn bitand(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().bitand(y.inner.as_ref()))
    }

    #[inline]
    pub fn bitor(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().bitor(y.inner.as_ref()))
    }

    #[inline]
    pub fn bitxor(x: &Self, y: &Self) -> Self {
        Self::new(x.inner.as_ref().clone().bitxor(y.inner.as_ref()))
    }

    #[inline]
    pub fn neg(x: &Self) -> Self {
        Self::new(x.as_inner().neg())
    }

    #[inline]
    pub fn not(x: &Self) -> Self {
        Self::new(!x.as_inner())
    }

    #[inline]
    pub(crate) fn as_inner(&self) -> &RawBigInt {
        &self.inner
    }
}

impl Display for JsBigInt {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        Display::fmt(&self.inner, f)
    }
}

impl From<RawBigInt> for JsBigInt {
    #[inline]
    fn from(value: RawBigInt) -> Self {
        Self {
            inner: Rc::new(value),
        }
    }
}

impl From<i8> for JsBigInt {
    #[inline]
    fn from(value: i8) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<u8> for JsBigInt {
    #[inline]
    fn from(value: u8) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<i16> for JsBigInt {
    #[inline]
    fn from(value: i16) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<u16> for JsBigInt {
    #[inline]
    fn from(value: u16) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<i32> for JsBigInt {
    #[inline]
    fn from(value: i32) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<u32> for JsBigInt {
    #[inline]
    fn from(value: u32) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<i64> for JsBigInt {
    #[inline]
    fn from(value: i64) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<u64> for JsBigInt {
    #[inline]
    fn from(value: u64) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<isize> for JsBigInt {
    #[inline]
    fn from(value: isize) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

impl From<usize> for JsBigInt {
    #[inline]
    fn from(value: usize) -> Self {
        Self {
            inner: Rc::new(RawBigInt::from(value)),
        }
    }
}

#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct TryFromF64Error;

impl Display for TryFromF64Error {
    #[inline]
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "Could not convert f64 value to a BigInt type")
    }
}

impl TryFrom<f64> for JsBigInt {
    type Error = TryFromF64Error;

    #[inline]
    fn try_from(n: f64) -> Result<Self, Self::Error> {
        // If the truncated version of the number is not the
        // same as the non-truncated version then the floating-point
        // number conains a fractional part.
        if !Number::equal(n.trunc(), n) {
            return Err(TryFromF64Error);
        }
        match RawBigInt::from_f64(n) {
            Some(bigint) => Ok(Self::new(bigint)),
            None => Err(TryFromF64Error),
        }
    }
}

impl PartialEq<i32> for JsBigInt {
    #[inline]
    fn eq(&self, other: &i32) -> bool {
        self.inner.as_ref() == &RawBigInt::from(*other)
    }
}

impl PartialEq<JsBigInt> for i32 {
    #[inline]
    fn eq(&self, other: &JsBigInt) -> bool {
        &RawBigInt::from(*self) == other.inner.as_ref()
    }
}

impl PartialEq<f64> for JsBigInt {
    #[inline]
    fn eq(&self, other: &f64) -> bool {
        if other.fract() != 0.0 {
            return false;
        }

        self.inner.as_ref() == &RawBigInt::from(*other as i64)
    }
}

impl PartialEq<JsBigInt> for f64 {
    #[inline]
    fn eq(&self, other: &JsBigInt) -> bool {
        if self.fract() != 0.0 {
            return false;
        }

        &RawBigInt::from(*self as i64) == other.inner.as_ref()
    }
}