1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
//! Defines `ObjectModule`.

use anyhow::anyhow;
use cranelift_codegen::binemit::{Addend, CodeOffset, Reloc};
use cranelift_codegen::entity::SecondaryMap;
use cranelift_codegen::isa::{OwnedTargetIsa, TargetIsa};
use cranelift_codegen::{ir, FinalizedMachReloc};
use cranelift_control::ControlPlane;
use cranelift_module::{
    DataDescription, DataId, FuncId, Init, Linkage, Module, ModuleDeclarations, ModuleError,
    ModuleReloc, ModuleRelocTarget, ModuleResult,
};
use log::info;
use object::write::{
    Object, Relocation, SectionId, StandardSection, Symbol, SymbolId, SymbolSection,
};
use object::{
    RelocationEncoding, RelocationFlags, RelocationKind, SectionKind, SymbolFlags, SymbolKind,
    SymbolScope,
};
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::mem;
use target_lexicon::PointerWidth;

/// A builder for `ObjectModule`.
pub struct ObjectBuilder {
    isa: OwnedTargetIsa,
    binary_format: object::BinaryFormat,
    architecture: object::Architecture,
    flags: object::FileFlags,
    endian: object::Endianness,
    name: Vec<u8>,
    libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
    per_function_section: bool,
}

impl ObjectBuilder {
    /// Create a new `ObjectBuilder` using the given Cranelift target, that
    /// can be passed to [`ObjectModule::new`].
    ///
    /// The `libcall_names` function provides a way to translate `cranelift_codegen`'s [`ir::LibCall`]
    /// enum to symbols. LibCalls are inserted in the IR as part of the legalization for certain
    /// floating point instructions, and for stack probes. If you don't know what to use for this
    /// argument, use [`cranelift_module::default_libcall_names`].
    pub fn new<V: Into<Vec<u8>>>(
        isa: OwnedTargetIsa,
        name: V,
        libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
    ) -> ModuleResult<Self> {
        let mut file_flags = object::FileFlags::None;
        let binary_format = match isa.triple().binary_format {
            target_lexicon::BinaryFormat::Elf => object::BinaryFormat::Elf,
            target_lexicon::BinaryFormat::Coff => object::BinaryFormat::Coff,
            target_lexicon::BinaryFormat::Macho => object::BinaryFormat::MachO,
            target_lexicon::BinaryFormat::Wasm => {
                return Err(ModuleError::Backend(anyhow!(
                    "binary format wasm is unsupported",
                )))
            }
            target_lexicon::BinaryFormat::Unknown => {
                return Err(ModuleError::Backend(anyhow!("binary format is unknown")))
            }
            other => {
                return Err(ModuleError::Backend(anyhow!(
                    "binary format {} not recognized",
                    other
                )))
            }
        };
        let architecture = match isa.triple().architecture {
            target_lexicon::Architecture::X86_32(_) => object::Architecture::I386,
            target_lexicon::Architecture::X86_64 => object::Architecture::X86_64,
            target_lexicon::Architecture::Arm(_) => object::Architecture::Arm,
            target_lexicon::Architecture::Aarch64(_) => object::Architecture::Aarch64,
            target_lexicon::Architecture::Riscv64(_) => {
                if binary_format != object::BinaryFormat::Elf {
                    return Err(ModuleError::Backend(anyhow!(
                        "binary format {:?} is not supported for riscv64",
                        binary_format,
                    )));
                }

                // FIXME(#4994): Get the right float ABI variant from the TargetIsa
                let mut eflags = object::elf::EF_RISCV_FLOAT_ABI_DOUBLE;

                // Set the RVC eflag if we have the C extension enabled.
                let has_c = isa
                    .isa_flags()
                    .iter()
                    .filter(|f| f.name == "has_zca" || f.name == "has_zcd")
                    .all(|f| f.as_bool().unwrap_or_default());
                if has_c {
                    eflags |= object::elf::EF_RISCV_RVC;
                }

                file_flags = object::FileFlags::Elf {
                    os_abi: object::elf::ELFOSABI_NONE,
                    abi_version: 0,
                    e_flags: eflags,
                };
                object::Architecture::Riscv64
            }
            target_lexicon::Architecture::S390x => object::Architecture::S390x,
            architecture => {
                return Err(ModuleError::Backend(anyhow!(
                    "target architecture {:?} is unsupported",
                    architecture,
                )))
            }
        };
        let endian = match isa.triple().endianness().unwrap() {
            target_lexicon::Endianness::Little => object::Endianness::Little,
            target_lexicon::Endianness::Big => object::Endianness::Big,
        };
        Ok(Self {
            isa,
            binary_format,
            architecture,
            flags: file_flags,
            endian,
            name: name.into(),
            libcall_names,
            per_function_section: false,
        })
    }

    /// Set if every function should end up in their own section.
    pub fn per_function_section(&mut self, per_function_section: bool) -> &mut Self {
        self.per_function_section = per_function_section;
        self
    }
}

/// An `ObjectModule` implements `Module` and emits ".o" files using the `object` library.
///
/// See the `ObjectBuilder` for a convenient way to construct `ObjectModule` instances.
pub struct ObjectModule {
    isa: OwnedTargetIsa,
    object: Object<'static>,
    declarations: ModuleDeclarations,
    functions: SecondaryMap<FuncId, Option<(SymbolId, bool)>>,
    data_objects: SecondaryMap<DataId, Option<(SymbolId, bool)>>,
    relocs: Vec<SymbolRelocs>,
    libcalls: HashMap<ir::LibCall, SymbolId>,
    libcall_names: Box<dyn Fn(ir::LibCall) -> String + Send + Sync>,
    known_symbols: HashMap<ir::KnownSymbol, SymbolId>,
    known_labels: HashMap<(FuncId, CodeOffset), SymbolId>,
    per_function_section: bool,
}

impl ObjectModule {
    /// Create a new `ObjectModule` using the given Cranelift target.
    pub fn new(builder: ObjectBuilder) -> Self {
        let mut object = Object::new(builder.binary_format, builder.architecture, builder.endian);
        object.flags = builder.flags;
        object.set_subsections_via_symbols();
        object.add_file_symbol(builder.name);
        Self {
            isa: builder.isa,
            object,
            declarations: ModuleDeclarations::default(),
            functions: SecondaryMap::new(),
            data_objects: SecondaryMap::new(),
            relocs: Vec::new(),
            libcalls: HashMap::new(),
            libcall_names: builder.libcall_names,
            known_symbols: HashMap::new(),
            known_labels: HashMap::new(),
            per_function_section: builder.per_function_section,
        }
    }
}

fn validate_symbol(name: &str) -> ModuleResult<()> {
    // null bytes are not allowed in symbol names and will cause the `object`
    // crate to panic. Let's return a clean error instead.
    if name.contains("\0") {
        return Err(ModuleError::Backend(anyhow::anyhow!(
            "Symbol {:?} has a null byte, which is disallowed",
            name
        )));
    }
    Ok(())
}

impl Module for ObjectModule {
    fn isa(&self) -> &dyn TargetIsa {
        &*self.isa
    }

    fn declarations(&self) -> &ModuleDeclarations {
        &self.declarations
    }

    fn declare_function(
        &mut self,
        name: &str,
        linkage: Linkage,
        signature: &ir::Signature,
    ) -> ModuleResult<FuncId> {
        validate_symbol(name)?;

        let (id, linkage) = self
            .declarations
            .declare_function(name, linkage, signature)?;

        let (scope, weak) = translate_linkage(linkage);

        if let Some((function, _defined)) = self.functions[id] {
            let symbol = self.object.symbol_mut(function);
            symbol.scope = scope;
            symbol.weak = weak;
        } else {
            let symbol_id = self.object.add_symbol(Symbol {
                name: name.as_bytes().to_vec(),
                value: 0,
                size: 0,
                kind: SymbolKind::Text,
                scope,
                weak,
                section: SymbolSection::Undefined,
                flags: SymbolFlags::None,
            });
            self.functions[id] = Some((symbol_id, false));
        }

        Ok(id)
    }

    fn declare_anonymous_function(&mut self, signature: &ir::Signature) -> ModuleResult<FuncId> {
        let id = self.declarations.declare_anonymous_function(signature)?;

        let symbol_id = self.object.add_symbol(Symbol {
            name: self
                .declarations
                .get_function_decl(id)
                .linkage_name(id)
                .into_owned()
                .into_bytes(),
            value: 0,
            size: 0,
            kind: SymbolKind::Text,
            scope: SymbolScope::Compilation,
            weak: false,
            section: SymbolSection::Undefined,
            flags: SymbolFlags::None,
        });
        self.functions[id] = Some((symbol_id, false));

        Ok(id)
    }

    fn declare_data(
        &mut self,
        name: &str,
        linkage: Linkage,
        writable: bool,
        tls: bool,
    ) -> ModuleResult<DataId> {
        validate_symbol(name)?;

        let (id, linkage) = self
            .declarations
            .declare_data(name, linkage, writable, tls)?;

        // Merging declarations with conflicting values for tls is not allowed, so it is safe to use
        // the passed in tls value here.
        let kind = if tls {
            SymbolKind::Tls
        } else {
            SymbolKind::Data
        };
        let (scope, weak) = translate_linkage(linkage);

        if let Some((data, _defined)) = self.data_objects[id] {
            let symbol = self.object.symbol_mut(data);
            symbol.kind = kind;
            symbol.scope = scope;
            symbol.weak = weak;
        } else {
            let symbol_id = self.object.add_symbol(Symbol {
                name: name.as_bytes().to_vec(),
                value: 0,
                size: 0,
                kind,
                scope,
                weak,
                section: SymbolSection::Undefined,
                flags: SymbolFlags::None,
            });
            self.data_objects[id] = Some((symbol_id, false));
        }

        Ok(id)
    }

    fn declare_anonymous_data(&mut self, writable: bool, tls: bool) -> ModuleResult<DataId> {
        let id = self.declarations.declare_anonymous_data(writable, tls)?;

        let kind = if tls {
            SymbolKind::Tls
        } else {
            SymbolKind::Data
        };

        let symbol_id = self.object.add_symbol(Symbol {
            name: self
                .declarations
                .get_data_decl(id)
                .linkage_name(id)
                .into_owned()
                .into_bytes(),
            value: 0,
            size: 0,
            kind,
            scope: SymbolScope::Compilation,
            weak: false,
            section: SymbolSection::Undefined,
            flags: SymbolFlags::None,
        });
        self.data_objects[id] = Some((symbol_id, false));

        Ok(id)
    }

    fn define_function_with_control_plane(
        &mut self,
        func_id: FuncId,
        ctx: &mut cranelift_codegen::Context,
        ctrl_plane: &mut ControlPlane,
    ) -> ModuleResult<()> {
        info!("defining function {}: {}", func_id, ctx.func.display());
        let mut code: Vec<u8> = Vec::new();

        let res = ctx.compile_and_emit(self.isa(), &mut code, ctrl_plane)?;
        let alignment = res.buffer.alignment as u64;

        self.define_function_bytes(
            func_id,
            &ctx.func,
            alignment,
            &code,
            ctx.compiled_code().unwrap().buffer.relocs(),
        )
    }

    fn define_function_bytes(
        &mut self,
        func_id: FuncId,
        func: &ir::Function,
        alignment: u64,
        bytes: &[u8],
        relocs: &[FinalizedMachReloc],
    ) -> ModuleResult<()> {
        info!("defining function {} with bytes", func_id);
        let decl = self.declarations.get_function_decl(func_id);
        let decl_name = decl.linkage_name(func_id);
        if !decl.linkage.is_definable() {
            return Err(ModuleError::InvalidImportDefinition(decl_name.into_owned()));
        }

        let &mut (symbol, ref mut defined) = self.functions[func_id].as_mut().unwrap();
        if *defined {
            return Err(ModuleError::DuplicateDefinition(decl_name.into_owned()));
        }
        *defined = true;

        let align = alignment
            .max(self.isa.function_alignment().minimum.into())
            .max(self.isa.symbol_alignment());
        let section = if self.per_function_section {
            let symbol_name = self.object.symbol(symbol).name.clone();
            self.object
                .add_subsection(StandardSection::Text, &symbol_name)
        } else {
            self.object.section_id(StandardSection::Text)
        };
        let offset = self.object.add_symbol_data(symbol, section, bytes, align);

        if !relocs.is_empty() {
            let relocs = relocs
                .iter()
                .map(|record| {
                    self.process_reloc(&ModuleReloc::from_mach_reloc(&record, func, func_id))
                })
                .collect();
            self.relocs.push(SymbolRelocs {
                section,
                offset,
                relocs,
            });
        }

        Ok(())
    }

    fn define_data(&mut self, data_id: DataId, data: &DataDescription) -> ModuleResult<()> {
        let decl = self.declarations.get_data_decl(data_id);
        if !decl.linkage.is_definable() {
            return Err(ModuleError::InvalidImportDefinition(
                decl.linkage_name(data_id).into_owned(),
            ));
        }

        let &mut (symbol, ref mut defined) = self.data_objects[data_id].as_mut().unwrap();
        if *defined {
            return Err(ModuleError::DuplicateDefinition(
                decl.linkage_name(data_id).into_owned(),
            ));
        }
        *defined = true;

        let &DataDescription {
            ref init,
            function_decls: _,
            data_decls: _,
            function_relocs: _,
            data_relocs: _,
            ref custom_segment_section,
            align,
        } = data;

        let pointer_reloc = match self.isa.triple().pointer_width().unwrap() {
            PointerWidth::U16 => unimplemented!("16bit pointers"),
            PointerWidth::U32 => Reloc::Abs4,
            PointerWidth::U64 => Reloc::Abs8,
        };
        let relocs = data
            .all_relocs(pointer_reloc)
            .map(|record| self.process_reloc(&record))
            .collect::<Vec<_>>();

        let section = if custom_segment_section.is_none() {
            let section_kind = if let Init::Zeros { .. } = *init {
                if decl.tls {
                    StandardSection::UninitializedTls
                } else {
                    StandardSection::UninitializedData
                }
            } else if decl.tls {
                StandardSection::Tls
            } else if decl.writable {
                StandardSection::Data
            } else if relocs.is_empty() {
                StandardSection::ReadOnlyData
            } else {
                StandardSection::ReadOnlyDataWithRel
            };
            self.object.section_id(section_kind)
        } else {
            if decl.tls {
                return Err(cranelift_module::ModuleError::Backend(anyhow::anyhow!(
                    "Custom section not supported for TLS"
                )));
            }
            let (seg, sec) = &custom_segment_section.as_ref().unwrap();
            self.object.add_section(
                seg.clone().into_bytes(),
                sec.clone().into_bytes(),
                if decl.writable {
                    SectionKind::Data
                } else if relocs.is_empty() {
                    SectionKind::ReadOnlyData
                } else {
                    SectionKind::ReadOnlyDataWithRel
                },
            )
        };

        let align = std::cmp::max(align.unwrap_or(1), self.isa.symbol_alignment());
        let offset = match *init {
            Init::Uninitialized => {
                panic!("data is not initialized yet");
            }
            Init::Zeros { size } => self
                .object
                .add_symbol_bss(symbol, section, size as u64, align),
            Init::Bytes { ref contents } => self
                .object
                .add_symbol_data(symbol, section, &contents, align),
        };
        if !relocs.is_empty() {
            self.relocs.push(SymbolRelocs {
                section,
                offset,
                relocs,
            });
        }
        Ok(())
    }
}

impl ObjectModule {
    /// Finalize all relocations and output an object.
    pub fn finish(mut self) -> ObjectProduct {
        let symbol_relocs = mem::take(&mut self.relocs);
        for symbol in symbol_relocs {
            for &ObjectRelocRecord {
                offset,
                ref name,
                flags,
                addend,
            } in &symbol.relocs
            {
                let target_symbol = self.get_symbol(name);
                self.object
                    .add_relocation(
                        symbol.section,
                        Relocation {
                            offset: symbol.offset + u64::from(offset),
                            flags,
                            symbol: target_symbol,
                            addend,
                        },
                    )
                    .unwrap();
            }
        }

        // Indicate that this object has a non-executable stack.
        if self.object.format() == object::BinaryFormat::Elf {
            self.object.add_section(
                vec![],
                ".note.GNU-stack".as_bytes().to_vec(),
                SectionKind::Linker,
            );
        }

        ObjectProduct {
            object: self.object,
            functions: self.functions,
            data_objects: self.data_objects,
        }
    }

    /// This should only be called during finish because it creates
    /// symbols for missing libcalls.
    fn get_symbol(&mut self, name: &ModuleRelocTarget) -> SymbolId {
        match *name {
            ModuleRelocTarget::User { .. } => {
                if ModuleDeclarations::is_function(name) {
                    let id = FuncId::from_name(name);
                    self.functions[id].unwrap().0
                } else {
                    let id = DataId::from_name(name);
                    self.data_objects[id].unwrap().0
                }
            }
            ModuleRelocTarget::LibCall(ref libcall) => {
                let name = (self.libcall_names)(*libcall);
                if let Some(symbol) = self.object.symbol_id(name.as_bytes()) {
                    symbol
                } else if let Some(symbol) = self.libcalls.get(libcall) {
                    *symbol
                } else {
                    let symbol = self.object.add_symbol(Symbol {
                        name: name.as_bytes().to_vec(),
                        value: 0,
                        size: 0,
                        kind: SymbolKind::Text,
                        scope: SymbolScope::Unknown,
                        weak: false,
                        section: SymbolSection::Undefined,
                        flags: SymbolFlags::None,
                    });
                    self.libcalls.insert(*libcall, symbol);
                    symbol
                }
            }
            // These are "magic" names well-known to the linker.
            // They require special treatment.
            ModuleRelocTarget::KnownSymbol(ref known_symbol) => {
                if let Some(symbol) = self.known_symbols.get(known_symbol) {
                    *symbol
                } else {
                    let symbol = self.object.add_symbol(match known_symbol {
                        ir::KnownSymbol::ElfGlobalOffsetTable => Symbol {
                            name: b"_GLOBAL_OFFSET_TABLE_".to_vec(),
                            value: 0,
                            size: 0,
                            kind: SymbolKind::Data,
                            scope: SymbolScope::Unknown,
                            weak: false,
                            section: SymbolSection::Undefined,
                            flags: SymbolFlags::None,
                        },
                        ir::KnownSymbol::CoffTlsIndex => Symbol {
                            name: b"_tls_index".to_vec(),
                            value: 0,
                            size: 32,
                            kind: SymbolKind::Tls,
                            scope: SymbolScope::Unknown,
                            weak: false,
                            section: SymbolSection::Undefined,
                            flags: SymbolFlags::None,
                        },
                    });
                    self.known_symbols.insert(*known_symbol, symbol);
                    symbol
                }
            }

            ModuleRelocTarget::FunctionOffset(func_id, offset) => {
                match self.known_labels.entry((func_id, offset)) {
                    Entry::Occupied(o) => *o.get(),
                    Entry::Vacant(v) => {
                        let func_symbol_id = self.functions[func_id].unwrap().0;
                        let func_symbol = self.object.symbol(func_symbol_id);

                        let name = format!(".L{}_{}", func_id.as_u32(), offset);
                        let symbol_id = self.object.add_symbol(Symbol {
                            name: name.as_bytes().to_vec(),
                            value: func_symbol.value + offset as u64,
                            size: 0,
                            kind: SymbolKind::Label,
                            scope: SymbolScope::Compilation,
                            weak: false,
                            section: SymbolSection::Section(func_symbol.section.id().unwrap()),
                            flags: SymbolFlags::None,
                        });

                        v.insert(symbol_id);
                        symbol_id
                    }
                }
            }
        }
    }

    fn process_reloc(&self, record: &ModuleReloc) -> ObjectRelocRecord {
        let flags = match record.kind {
            Reloc::Abs4 => RelocationFlags::Generic {
                kind: RelocationKind::Absolute,
                encoding: RelocationEncoding::Generic,
                size: 32,
            },
            Reloc::Abs8 => RelocationFlags::Generic {
                kind: RelocationKind::Absolute,
                encoding: RelocationEncoding::Generic,
                size: 64,
            },
            Reloc::X86PCRel4 => RelocationFlags::Generic {
                kind: RelocationKind::Relative,
                encoding: RelocationEncoding::Generic,
                size: 32,
            },
            Reloc::X86CallPCRel4 => RelocationFlags::Generic {
                kind: RelocationKind::Relative,
                encoding: RelocationEncoding::X86Branch,
                size: 32,
            },
            // TODO: Get Cranelift to tell us when we can use
            // R_X86_64_GOTPCRELX/R_X86_64_REX_GOTPCRELX.
            Reloc::X86CallPLTRel4 => RelocationFlags::Generic {
                kind: RelocationKind::PltRelative,
                encoding: RelocationEncoding::X86Branch,
                size: 32,
            },
            Reloc::X86SecRel => RelocationFlags::Generic {
                kind: RelocationKind::SectionOffset,
                encoding: RelocationEncoding::Generic,
                size: 32,
            },
            Reloc::X86GOTPCRel4 => RelocationFlags::Generic {
                kind: RelocationKind::GotRelative,
                encoding: RelocationEncoding::Generic,
                size: 32,
            },
            Reloc::Arm64Call => RelocationFlags::Generic {
                kind: RelocationKind::Relative,
                encoding: RelocationEncoding::AArch64Call,
                size: 26,
            },
            Reloc::ElfX86_64TlsGd => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "ElfX86_64TlsGd is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_X86_64_TLSGD,
                }
            }
            Reloc::MachOX86_64Tlv => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::MachO,
                    "MachOX86_64Tlv is not supported for this file format"
                );
                RelocationFlags::MachO {
                    r_type: object::macho::X86_64_RELOC_TLV,
                    r_pcrel: true,
                    r_length: 2,
                }
            }
            Reloc::MachOAarch64TlsAdrPage21 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::MachO,
                    "MachOAarch64TlsAdrPage21 is not supported for this file format"
                );
                RelocationFlags::MachO {
                    r_type: object::macho::ARM64_RELOC_TLVP_LOAD_PAGE21,
                    r_pcrel: true,
                    r_length: 2,
                }
            }
            Reloc::MachOAarch64TlsAdrPageOff12 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::MachO,
                    "MachOAarch64TlsAdrPageOff12 is not supported for this file format"
                );
                RelocationFlags::MachO {
                    r_type: object::macho::ARM64_RELOC_TLVP_LOAD_PAGEOFF12,
                    r_pcrel: false,
                    r_length: 2,
                }
            }
            Reloc::Aarch64TlsDescAdrPage21 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "Aarch64TlsDescAdrPage21 is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_AARCH64_TLSDESC_ADR_PAGE21,
                }
            }
            Reloc::Aarch64TlsDescLd64Lo12 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "Aarch64TlsDescLd64Lo12 is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_AARCH64_TLSDESC_LD64_LO12,
                }
            }
            Reloc::Aarch64TlsDescAddLo12 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "Aarch64TlsDescAddLo12 is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_AARCH64_TLSDESC_ADD_LO12,
                }
            }
            Reloc::Aarch64TlsDescCall => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "Aarch64TlsDescCall is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_AARCH64_TLSDESC_CALL,
                }
            }

            Reloc::Aarch64AdrGotPage21 => match self.object.format() {
                object::BinaryFormat::Elf => RelocationFlags::Elf {
                    r_type: object::elf::R_AARCH64_ADR_GOT_PAGE,
                },
                object::BinaryFormat::MachO => RelocationFlags::MachO {
                    r_type: object::macho::ARM64_RELOC_GOT_LOAD_PAGE21,
                    r_pcrel: true,
                    r_length: 2,
                },
                _ => unimplemented!("Aarch64AdrGotPage21 is not supported for this file format"),
            },
            Reloc::Aarch64Ld64GotLo12Nc => match self.object.format() {
                object::BinaryFormat::Elf => RelocationFlags::Elf {
                    r_type: object::elf::R_AARCH64_LD64_GOT_LO12_NC,
                },
                object::BinaryFormat::MachO => RelocationFlags::MachO {
                    r_type: object::macho::ARM64_RELOC_GOT_LOAD_PAGEOFF12,
                    r_pcrel: false,
                    r_length: 2,
                },
                _ => unimplemented!("Aarch64Ld64GotLo12Nc is not supported for this file format"),
            },
            Reloc::S390xPCRel32Dbl => RelocationFlags::Generic {
                kind: RelocationKind::Relative,
                encoding: RelocationEncoding::S390xDbl,
                size: 32,
            },
            Reloc::S390xPLTRel32Dbl => RelocationFlags::Generic {
                kind: RelocationKind::PltRelative,
                encoding: RelocationEncoding::S390xDbl,
                size: 32,
            },
            Reloc::S390xTlsGd64 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "S390xTlsGd64 is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_390_TLS_GD64,
                }
            }
            Reloc::S390xTlsGdCall => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "S390xTlsGdCall is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_390_TLS_GDCALL,
                }
            }
            Reloc::RiscvCallPlt => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "RiscvCallPlt is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_RISCV_CALL_PLT,
                }
            }
            Reloc::RiscvTlsGdHi20 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "RiscvTlsGdHi20 is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_RISCV_TLS_GD_HI20,
                }
            }
            Reloc::RiscvPCRelLo12I => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "RiscvPCRelLo12I is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_RISCV_PCREL_LO12_I,
                }
            }
            Reloc::RiscvGotHi20 => {
                assert_eq!(
                    self.object.format(),
                    object::BinaryFormat::Elf,
                    "RiscvGotHi20 is not supported for this file format"
                );
                RelocationFlags::Elf {
                    r_type: object::elf::R_RISCV_GOT_HI20,
                }
            }
            // FIXME
            reloc => unimplemented!("{:?}", reloc),
        };

        ObjectRelocRecord {
            offset: record.offset,
            name: record.name.clone(),
            flags,
            addend: record.addend,
        }
    }
}

fn translate_linkage(linkage: Linkage) -> (SymbolScope, bool) {
    let scope = match linkage {
        Linkage::Import => SymbolScope::Unknown,
        Linkage::Local => SymbolScope::Compilation,
        Linkage::Hidden => SymbolScope::Linkage,
        Linkage::Export | Linkage::Preemptible => SymbolScope::Dynamic,
    };
    // TODO: this matches rustc_codegen_cranelift, but may be wrong.
    let weak = linkage == Linkage::Preemptible;
    (scope, weak)
}

/// This is the output of `ObjectModule`'s
/// [`finish`](../struct.ObjectModule.html#method.finish) function.
/// It contains the generated `Object` and other information produced during
/// compilation.
pub struct ObjectProduct {
    /// Object artifact with all functions and data from the module defined.
    pub object: Object<'static>,
    /// Symbol IDs for functions (both declared and defined).
    pub functions: SecondaryMap<FuncId, Option<(SymbolId, bool)>>,
    /// Symbol IDs for data objects (both declared and defined).
    pub data_objects: SecondaryMap<DataId, Option<(SymbolId, bool)>>,
}

impl ObjectProduct {
    /// Return the `SymbolId` for the given function.
    #[inline]
    pub fn function_symbol(&self, id: FuncId) -> SymbolId {
        self.functions[id].unwrap().0
    }

    /// Return the `SymbolId` for the given data object.
    #[inline]
    pub fn data_symbol(&self, id: DataId) -> SymbolId {
        self.data_objects[id].unwrap().0
    }

    /// Write the object bytes in memory.
    #[inline]
    pub fn emit(self) -> Result<Vec<u8>, object::write::Error> {
        self.object.write()
    }
}

#[derive(Clone)]
struct SymbolRelocs {
    section: SectionId,
    offset: u64,
    relocs: Vec<ObjectRelocRecord>,
}

#[derive(Clone)]
struct ObjectRelocRecord {
    offset: CodeOffset,
    name: ModuleRelocTarget,
    flags: RelocationFlags,
    addend: Addend,
}