pub struct NodeKey { /* private fields */ }
Expand description

A reference to a node.

Implementations§

Get the node for this NodeKey, given the nodes from the appropriate EGraph.

Examples found in repository?
src/lib.rs (line 339)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    fn ctx_eq(&self, a: &NodeKey, b: &NodeKey, uf: &mut UnionFind) -> bool {
        let a = a.node(self.nodes);
        let b = b.node(self.nodes);
        self.node_ctx.ctx_eq(a, b, uf)
    }
}

impl<'a, 'b, L: Language> CtxHash<NodeKey> for NodeKeyCtx<'a, 'b, L> {
    fn ctx_hash(&self, value: &NodeKey, uf: &mut UnionFind) -> u64 {
        self.node_ctx.ctx_hash(value.node(self.nodes), uf)
    }
}

/// An EClass entry. Contains either a single new enode and a child
/// eclass (i.e., adds one new enode), or unions two child eclasses
/// together.
#[derive(Debug, Clone, Copy)]
pub struct EClass {
    // formats:
    //
    // 00 | unused  (31 bits)        | NodeKey (31 bits)
    // 01 | eclass_child   (31 bits) | NodeKey (31 bits)
    // 10 | eclass_child_1 (31 bits) | eclass_child_id_2 (31 bits)
    bits: u64,
}

impl EClass {
    fn node(node: NodeKey) -> EClass {
        let node_idx = node.bits() as u64;
        debug_assert!(node_idx < (1 << 31));
        EClass {
            bits: (0b00 << 62) | node_idx,
        }
    }

    fn node_and_child(node: NodeKey, eclass_child: Id) -> EClass {
        let node_idx = node.bits() as u64;
        debug_assert!(node_idx < (1 << 31));
        debug_assert!(eclass_child != Id::invalid());
        let child = eclass_child.0 as u64;
        debug_assert!(child < (1 << 31));
        EClass {
            bits: (0b01 << 62) | (child << 31) | node_idx,
        }
    }

    fn union(child1: Id, child2: Id) -> EClass {
        debug_assert!(child1 != Id::invalid());
        let child1 = child1.0 as u64;
        debug_assert!(child1 < (1 << 31));

        debug_assert!(child2 != Id::invalid());
        let child2 = child2.0 as u64;
        debug_assert!(child2 < (1 << 31));

        EClass {
            bits: (0b10 << 62) | (child1 << 31) | child2,
        }
    }

    /// Get the node, if any, from a node-only or node-and-child
    /// eclass.
    pub fn get_node(&self) -> Option<NodeKey> {
        self.as_node()
            .or_else(|| self.as_node_and_child().map(|(node, _)| node))
    }

    /// Get the first child, if any.
    pub fn child1(&self) -> Option<Id> {
        self.as_node_and_child()
            .map(|(_, p1)| p1)
            .or(self.as_union().map(|(p1, _)| p1))
    }

    /// Get the second child, if any.
    pub fn child2(&self) -> Option<Id> {
        self.as_union().map(|(_, p2)| p2)
    }

    /// If this EClass is just a lone enode, return it.
    pub fn as_node(&self) -> Option<NodeKey> {
        if (self.bits >> 62) == 0b00 {
            let node_idx = (self.bits & ((1 << 31) - 1)) as u32;
            Some(NodeKey::from_bits(node_idx))
        } else {
            None
        }
    }

    /// If this EClass is one new enode and a child, return the node
    /// and child ID.
    pub fn as_node_and_child(&self) -> Option<(NodeKey, Id)> {
        if (self.bits >> 62) == 0b01 {
            let node_idx = (self.bits & ((1 << 31) - 1)) as u32;
            let child = ((self.bits >> 31) & ((1 << 31) - 1)) as u32;
            Some((NodeKey::from_bits(node_idx), Id::from_bits(child)))
        } else {
            None
        }
    }

    /// If this EClass is the union variety, return the two child
    /// EClasses. Both are guaranteed not to be `Id::invalid()`.
    pub fn as_union(&self) -> Option<(Id, Id)> {
        if (self.bits >> 62) == 0b10 {
            let child1 = ((self.bits >> 31) & ((1 << 31) - 1)) as u32;
            let child2 = (self.bits & ((1 << 31) - 1)) as u32;
            Some((Id::from_bits(child1), Id::from_bits(child2)))
        } else {
            None
        }
    }
}

/// A new or existing `T` when adding to a deduplicated set or data
/// structure, like an egraph.
#[derive(Clone, Copy, Debug)]
pub enum NewOrExisting<T> {
    New(T),
    Existing(T),
}

impl<T> NewOrExisting<T> {
    /// Get the underlying value.
    pub fn get(self) -> T {
        match self {
            NewOrExisting::New(t) => t,
            NewOrExisting::Existing(t) => t,
        }
    }
}

impl<L: Language, A: Analysis<L = L>> EGraph<L, A>
where
    L::Node: 'static,
{
    /// Create a new aegraph.
    pub fn new(analysis: Option<A>) -> Self {
        let analysis = analysis.map(|a| (a, SecondaryMap::new()));
        Self {
            nodes: vec![],
            node_map: CtxHashMap::new(),
            classes: PrimaryMap::new(),
            unionfind: UnionFind::new(),
            analysis,
        }
    }

    /// Create a new aegraph with the given capacity.
    pub fn with_capacity(nodes: usize, analysis: Option<A>) -> Self {
        let analysis = analysis.map(|a| (a, SecondaryMap::with_capacity(nodes)));
        Self {
            nodes: Vec::with_capacity(nodes),
            node_map: CtxHashMap::with_capacity(nodes),
            classes: PrimaryMap::with_capacity(nodes),
            unionfind: UnionFind::with_capacity(nodes),
            analysis,
        }
    }

    /// Add a new node.
    pub fn add(&mut self, node: L::Node, node_ctx: &L) -> NewOrExisting<Id> {
        // Push the node. We can then build a NodeKey that refers to
        // it and look for an existing interned copy. If one exists,
        // we can pop the pushed node and return the existing Id.
        let node_idx = self.nodes.len();
        trace!("adding node: {:?}", node);
        let needs_dedup = node_ctx.needs_dedup(&node);
        self.nodes.push(node);

        let key = NodeKey::from_node_idx(node_idx);
        if needs_dedup {
            let ctx = NodeKeyCtx {
                nodes: &self.nodes[..],
                node_ctx,
            };

            match self.node_map.entry(key, &ctx, &mut self.unionfind) {
                Entry::Occupied(o) => {
                    let eclass_id = *o.get();
                    self.nodes.pop();
                    trace!(" -> existing id {}", eclass_id);
                    NewOrExisting::Existing(eclass_id)
                }
                Entry::Vacant(v) => {
                    // We're creating a new eclass now.
                    let eclass_id = self.classes.push(EClass::node(key));
                    trace!(" -> new node and eclass: {}", eclass_id);
                    self.unionfind.add(eclass_id);

                    // Add to interning map with a NodeKey referring to the eclass.
                    v.insert(eclass_id);

                    // Update analysis.
                    let node_ctx = ctx.node_ctx;
                    self.update_analysis_new(node_ctx, eclass_id, key);

                    NewOrExisting::New(eclass_id)
                }
            }
        } else {
            let eclass_id = self.classes.push(EClass::node(key));
            self.unionfind.add(eclass_id);
            NewOrExisting::New(eclass_id)
        }
    }

    /// Merge one eclass into another, maintaining the acyclic
    /// property (args must have lower eclass Ids than the eclass
    /// containing the node with those args). Returns the Id of the
    /// merged eclass.
    pub fn union(&mut self, ctx: &L, a: Id, b: Id) -> Id {
        assert_ne!(a, Id::invalid());
        assert_ne!(b, Id::invalid());
        let (a, b) = (std::cmp::max(a, b), std::cmp::min(a, b));
        trace!("union: id {} and id {}", a, b);
        if a == b {
            trace!(" -> no-op");
            return a;
        }

        self.unionfind.union(a, b);

        // If the younger eclass has no child, we can link it
        // directly and return that eclass. Otherwise, we create a new
        // union eclass.
        if let Some(node) = self.classes[a].as_node() {
            trace!(
                " -> id {} is one-node eclass; making into node-and-child with id {}",
                a,
                b
            );
            self.classes[a] = EClass::node_and_child(node, b);
            self.update_analysis_union(ctx, a, a, b);
            return a;
        }

        let u = self.classes.push(EClass::union(a, b));
        self.unionfind.add(u);
        self.unionfind.union(u, b);
        trace!(" -> union id {} and id {} into id {}", a, b, u);
        self.update_analysis_union(ctx, u, a, b);
        u
    }

    /// Get the canonical ID for an eclass. This may be an older
    /// generation, so will not be able to see all enodes in the
    /// eclass; but it will allow us to unambiguously refer to an
    /// eclass, even across merging.
    pub fn canonical_id_mut(&mut self, eclass: Id) -> Id {
        self.unionfind.find_and_update(eclass)
    }

    /// Get the canonical ID for an eclass. This may be an older
    /// generation, so will not be able to see all enodes in the
    /// eclass; but it will allow us to unambiguously refer to an
    /// eclass, even across merging.
    pub fn canonical_id(&self, eclass: Id) -> Id {
        self.unionfind.find(eclass)
    }

    /// Get the enodes for a given eclass.
    pub fn enodes(&self, eclass: Id) -> NodeIter<L, A> {
        NodeIter {
            stack: smallvec![eclass],
            _phantom1: PhantomData,
            _phantom2: PhantomData,
        }
    }

    /// Update analysis for a given eclass node (new-enode case).
    fn update_analysis_new(&mut self, ctx: &L, eclass: Id, node: NodeKey) {
        if let Some((analysis, state)) = self.analysis.as_mut() {
            let node = node.node(&self.nodes);
            state[eclass] = analysis.for_node(ctx, node, state);
        }
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.