pub struct Function {
    pub name: UserFuncName,
    pub stencil: FunctionStencil,
    pub params: FunctionParameters,
}
Expand description

Functions can be cloned, but it is not a very fast operation. The clone will have all the same entity numbers as the original.

Fields§

§name: UserFuncName

Name of this function.

Mostly used by .clif files, only there for debugging / naming purposes.

§stencil: FunctionStencil

All the fields required for compiling a function, independently of details irrelevant to compilation and that are stored in the FunctionParameters params field instead.

§params: FunctionParameters

All the parameters that can be applied onto the function stencil, that is, that don’t matter when caching compilation artifacts.

Implementations§

Create a function with the given name and signature.

Examples found in repository?
src/ir/function.rs (line 471)
470
471
472
    pub fn new() -> Self {
        Self::with_name_signature(Default::default(), Signature::new(CallConv::Fast))
    }

Clear all data structures in this function.

Examples found in repository?
src/context.rs (line 86)
85
86
87
88
89
90
91
92
    pub fn clear(&mut self) {
        self.func.clear();
        self.cfg.clear();
        self.domtree.clear();
        self.loop_analysis.clear();
        self.compiled_code = None;
        self.want_disasm = false;
    }

Create a new empty, anonymous function with a Fast calling convention.

Examples found in repository?
src/context.rs (line 66)
65
66
67
    pub fn new() -> Self {
        Self::for_function(Function::new())
    }

Return an object that can display this function with correct ISA-specific annotations.

Examples found in repository?
src/context.rs (line 164)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    pub fn optimize(&mut self, isa: &dyn TargetIsa) -> CodegenResult<()> {
        log::debug!(
            "Number of CLIF instructions to optimize: {}",
            self.func.dfg.num_insts()
        );
        log::debug!(
            "Number of CLIF blocks to optimize: {}",
            self.func.dfg.num_blocks()
        );

        let opt_level = isa.flags().opt_level();
        crate::trace!(
            "Optimizing (opt level {:?}):\n{}",
            opt_level,
            self.func.display()
        );

        self.compute_cfg();
        if !isa.flags().use_egraphs() && opt_level != OptLevel::None {
            self.preopt(isa)?;
        }
        if isa.flags().enable_nan_canonicalization() {
            self.canonicalize_nans(isa)?;
        }

        self.legalize(isa)?;

        if !isa.flags().use_egraphs() && opt_level != OptLevel::None {
            self.compute_domtree();
            self.compute_loop_analysis();
            self.licm(isa)?;
            self.simple_gvn(isa)?;
        }

        self.compute_domtree();
        self.eliminate_unreachable_code(isa)?;

        if isa.flags().use_egraphs() || opt_level != OptLevel::None {
            self.dce(isa)?;
        }

        self.remove_constant_phis(isa)?;

        if isa.flags().use_egraphs() {
            log::debug!(
                "About to optimize with egraph phase:\n{}",
                self.func.display()
            );
            self.compute_loop_analysis();
            let mut eg = FuncEGraph::new(&self.func, &self.domtree, &self.loop_analysis, &self.cfg);
            eg.elaborate(&mut self.func);
            log::debug!("After egraph optimization:\n{}", self.func.display());
            log::info!("egraph stats: {:?}", eg.stats);
        } else if opt_level != OptLevel::None && isa.flags().enable_alias_analysis() {
            self.replace_redundant_loads()?;
            self.simple_gvn(isa)?;
        }

        Ok(())
    }
More examples
Hide additional examples
src/legalizer/mod.rs (line 50)
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
pub fn simple_legalize(func: &mut ir::Function, cfg: &mut ControlFlowGraph, isa: &dyn TargetIsa) {
    trace!("Pre-legalization function:\n{}", func.display());

    let mut pos = FuncCursor::new(func);
    let func_begin = pos.position();
    pos.set_position(func_begin);
    while let Some(_block) = pos.next_block() {
        let mut prev_pos = pos.position();
        while let Some(inst) = pos.next_inst() {
            match pos.func.dfg[inst] {
                // control flow
                InstructionData::CondTrap {
                    opcode:
                        opcode @ (ir::Opcode::Trapnz | ir::Opcode::Trapz | ir::Opcode::ResumableTrapnz),
                    arg,
                    code,
                } => {
                    expand_cond_trap(inst, &mut pos.func, cfg, opcode, arg, code);
                }

                // memory and constants
                InstructionData::UnaryGlobalValue {
                    opcode: ir::Opcode::GlobalValue,
                    global_value,
                } => expand_global_value(inst, &mut pos.func, isa, global_value),
                InstructionData::HeapAddr {
                    opcode: ir::Opcode::HeapAddr,
                    heap,
                    arg,
                    offset,
                    size,
                } => expand_heap_addr(inst, &mut pos.func, cfg, isa, heap, arg, offset, size),
                InstructionData::HeapLoad {
                    opcode: ir::Opcode::HeapLoad,
                    heap_imm,
                    arg,
                } => expand_heap_load(inst, &mut pos.func, cfg, isa, heap_imm, arg),
                InstructionData::HeapStore {
                    opcode: ir::Opcode::HeapStore,
                    heap_imm,
                    args,
                } => expand_heap_store(inst, &mut pos.func, cfg, isa, heap_imm, args[0], args[1]),
                InstructionData::StackLoad {
                    opcode: ir::Opcode::StackLoad,
                    stack_slot,
                    offset,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::StackStore {
                    opcode: ir::Opcode::StackStore,
                    arg,
                    stack_slot,
                    offset,
                } => {
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().stack_addr(addr_ty, stack_slot, offset);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::DynamicStackLoad {
                    opcode: ir::Opcode::DynamicStackLoad,
                    dynamic_stack_slot,
                } => {
                    let ty = pos.func.dfg.value_type(pos.func.dfg.first_result(inst));
                    assert!(ty.is_dynamic_vector());
                    let addr_ty = isa.pointer_type();

                    let mut pos = FuncCursor::new(pos.func).at_inst(inst);
                    pos.use_srcloc(inst);

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    // Stack slots are required to be accessible and aligned.
                    let mflags = MemFlags::trusted();
                    pos.func.dfg.replace(inst).load(ty, mflags, addr, 0);
                }
                InstructionData::DynamicStackStore {
                    opcode: ir::Opcode::DynamicStackStore,
                    arg,
                    dynamic_stack_slot,
                } => {
                    pos.use_srcloc(inst);
                    let addr_ty = isa.pointer_type();
                    let vector_ty = pos.func.dfg.value_type(arg);
                    assert!(vector_ty.is_dynamic_vector());

                    let addr = pos.ins().dynamic_stack_addr(addr_ty, dynamic_stack_slot);

                    let mut mflags = MemFlags::new();
                    // Stack slots are required to be accessible and aligned.
                    mflags.set_notrap();
                    mflags.set_aligned();
                    pos.func.dfg.replace(inst).store(mflags, arg, addr, 0);
                }
                InstructionData::TableAddr {
                    opcode: ir::Opcode::TableAddr,
                    table,
                    arg,
                    offset,
                } => expand_table_addr(isa, inst, &mut pos.func, table, arg, offset),

                InstructionData::BinaryImm64 { opcode, arg, imm } => {
                    let is_signed = match opcode {
                        ir::Opcode::IaddImm
                        | ir::Opcode::IrsubImm
                        | ir::Opcode::ImulImm
                        | ir::Opcode::SdivImm
                        | ir::Opcode::SremImm
                        | ir::Opcode::IfcmpImm => true,
                        _ => false,
                    };

                    let imm = imm_const(&mut pos, arg, imm, is_signed);
                    let replace = pos.func.dfg.replace(inst);
                    match opcode {
                        // bitops
                        ir::Opcode::BandImm => {
                            replace.band(arg, imm);
                        }
                        ir::Opcode::BorImm => {
                            replace.bor(arg, imm);
                        }
                        ir::Opcode::BxorImm => {
                            replace.bxor(arg, imm);
                        }
                        // bitshifting
                        ir::Opcode::IshlImm => {
                            replace.ishl(arg, imm);
                        }
                        ir::Opcode::RotlImm => {
                            replace.rotl(arg, imm);
                        }
                        ir::Opcode::RotrImm => {
                            replace.rotr(arg, imm);
                        }
                        ir::Opcode::SshrImm => {
                            replace.sshr(arg, imm);
                        }
                        ir::Opcode::UshrImm => {
                            replace.ushr(arg, imm);
                        }
                        // math
                        ir::Opcode::IaddImm => {
                            replace.iadd(arg, imm);
                        }
                        ir::Opcode::IrsubImm => {
                            // note: arg order reversed
                            replace.isub(imm, arg);
                        }
                        ir::Opcode::ImulImm => {
                            replace.imul(arg, imm);
                        }
                        ir::Opcode::SdivImm => {
                            replace.sdiv(arg, imm);
                        }
                        ir::Opcode::SremImm => {
                            replace.srem(arg, imm);
                        }
                        ir::Opcode::UdivImm => {
                            replace.udiv(arg, imm);
                        }
                        ir::Opcode::UremImm => {
                            replace.urem(arg, imm);
                        }
                        // comparisons
                        ir::Opcode::IfcmpImm => {
                            replace.ifcmp(arg, imm);
                        }
                        _ => prev_pos = pos.position(),
                    };
                }

                // comparisons
                InstructionData::IntCompareImm {
                    opcode: ir::Opcode::IcmpImm,
                    cond,
                    arg,
                    imm,
                } => {
                    let imm = imm_const(&mut pos, arg, imm, true);
                    pos.func.dfg.replace(inst).icmp(cond, arg, imm);
                }

                _ => {
                    prev_pos = pos.position();
                    continue;
                }
            }

            // Legalization implementations require fixpoint loop here.
            // TODO: fix this.
            pos.set_position(prev_pos);
        }
    }

    trace!("Post-legalization function:\n{}", func.display());
}

Return an object that can display this function with correct ISA-specific annotations.

Sets an absolute source location for the given instruction.

If no base source location has been set yet, records it at the same time.

Examples found in repository?
src/cursor.rs (line 662)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
    fn insert_built_inst(self, inst: ir::Inst) -> &'c mut ir::DataFlowGraph {
        // TODO: Remove this assertion once #796 is fixed.
        #[cfg(debug_assertions)]
        {
            if let CursorPosition::At(_) = self.position() {
                if let Some(curr) = self.current_inst() {
                    if let Some(prev) = self.layout().prev_inst(curr) {
                        let prev_op = self.data_flow_graph()[prev].opcode();
                        let inst_op = self.data_flow_graph()[inst].opcode();
                        let curr_op = self.data_flow_graph()[curr].opcode();
                        if prev_op.is_branch()
                            && !prev_op.is_terminator()
                            && !inst_op.is_terminator()
                        {
                            panic!(
                                "Inserting instruction {} after {}, and before {}",
                                inst_op, prev_op, curr_op
                            )
                        }
                    };
                };
            };
        }
        self.insert_inst(inst);
        if !self.srcloc.is_default() {
            self.func.set_srcloc(inst, self.srcloc);
        }
        &mut self.func.dfg
    }

Returns an absolute source location for the given instruction.

Examples found in repository?
src/cursor.rs (line 592)
591
592
593
    pub fn use_srcloc(&mut self, inst: ir::Inst) {
        self.srcloc = self.func.srcloc(inst);
    }
More examples
Hide additional examples
src/write.rs (line 344)
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
fn write_instruction(
    w: &mut dyn Write,
    func: &Function,
    aliases: &SecondaryMap<Value, Vec<Value>>,
    inst: Inst,
    indent: usize,
) -> fmt::Result {
    // Prefix containing source location, encoding, and value locations.
    let mut s = String::with_capacity(16);

    // Source location goes first.
    let srcloc = func.srcloc(inst);
    if !srcloc.is_default() {
        write!(s, "{} ", srcloc)?;
    }

    // Write out prefix and indent the instruction.
    write!(w, "{1:0$}", indent, s)?;

    // Write out the result values, if any.
    let mut has_results = false;
    for r in func.dfg.inst_results(inst) {
        if !has_results {
            has_results = true;
            write!(w, "{}", r)?;
        } else {
            write!(w, ", {}", r)?;
        }
    }
    if has_results {
        write!(w, " = ")?;
    }

    // Then the opcode, possibly with a '.type' suffix.
    let opcode = func.dfg[inst].opcode();

    match type_suffix(func, inst) {
        Some(suf) => write!(w, "{}.{}", opcode, suf)?,
        None => write!(w, "{}", opcode)?,
    }

    write_operands(w, &func.dfg, inst)?;
    writeln!(w)?;

    // Value aliases come out on lines after the instruction defining the referent.
    for r in func.dfg.inst_results(inst) {
        write_value_aliases(w, aliases, *r, indent)?;
    }
    Ok(())
}

Declare a user-defined external function import, to be referenced in ExtFuncData::User later.

Declare an external function import.

Methods from Deref<Target = FunctionStencil>§

Creates a jump table in the function, to be used by br_table instructions.

Creates a sized stack slot in the function, to be used by stack_load, stack_store and stack_addr instructions.

Creates a dynamic stack slot in the function, to be used by dynamic_stack_load, dynamic_stack_store and dynamic_stack_addr instructions.

Adds a signature which can later be used to declare an external function import.

Declares a global value accessible to the function.

Find the global dyn_scale value associated with given DynamicType

Examples found in repository?
src/ir/function.rs (line 252)
250
251
252
253
    pub fn get_dynamic_slot_scale(&self, dss: DynamicStackSlot) -> GlobalValue {
        let dyn_ty = self.dynamic_stack_slots.get(dss).unwrap().dyn_ty;
        self.get_dyn_scale(dyn_ty)
    }

Find the global dyn_scale for the given stack slot.

Get a concrete Type from a user defined DynamicType.

Examples found in repository?
src/machinst/abi.rs (line 1078)
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    pub fn new<'a>(
        f: &ir::Function,
        isa: &dyn TargetIsa,
        isa_flags: &M::F,
        sigs: &SigSet,
    ) -> CodegenResult<Self> {
        trace!("ABI: func signature {:?}", f.signature);

        let flags = isa.flags().clone();
        let sig = sigs.abi_sig_for_signature(&f.signature);

        let call_conv = f.signature.call_conv;
        // Only these calling conventions are supported.
        debug_assert!(
            call_conv == isa::CallConv::SystemV
                || call_conv == isa::CallConv::Fast
                || call_conv == isa::CallConv::Cold
                || call_conv.extends_windows_fastcall()
                || call_conv == isa::CallConv::AppleAarch64
                || call_conv == isa::CallConv::WasmtimeSystemV
                || call_conv == isa::CallConv::WasmtimeAppleAarch64,
            "Unsupported calling convention: {:?}",
            call_conv
        );

        // Compute sized stackslot locations and total stackslot size.
        let mut sized_stack_offset: u32 = 0;
        let mut sized_stackslots = PrimaryMap::new();
        for (stackslot, data) in f.sized_stack_slots.iter() {
            let off = sized_stack_offset;
            sized_stack_offset += data.size;
            let mask = M::word_bytes() - 1;
            sized_stack_offset = (sized_stack_offset + mask) & !mask;
            debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
            sized_stackslots.push(off);
        }

        // Compute dynamic stackslot locations and total stackslot size.
        let mut dynamic_stackslots = PrimaryMap::new();
        let mut dynamic_stack_offset: u32 = sized_stack_offset;
        for (stackslot, data) in f.dynamic_stack_slots.iter() {
            debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
            let off = dynamic_stack_offset;
            let ty = f
                .get_concrete_dynamic_ty(data.dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {}", data.dyn_ty));
            dynamic_stack_offset += isa.dynamic_vector_bytes(ty);
            let mask = M::word_bytes() - 1;
            dynamic_stack_offset = (dynamic_stack_offset + mask) & !mask;
            dynamic_stackslots.push(off);
        }
        let stackslots_size = dynamic_stack_offset;

        let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
        for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
            let ty = f
                .get_concrete_dynamic_ty(dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {}", dyn_ty));
            let size = isa.dynamic_vector_bytes(ty);
            dynamic_type_sizes.insert(ty, size);
        }

        // Figure out what instructions, if any, will be needed to check the
        // stack limit. This can either be specified as a special-purpose
        // argument or as a global value which often calculates the stack limit
        // from the arguments.
        let stack_limit =
            get_special_purpose_param_register(f, sigs, &sig, ir::ArgumentPurpose::StackLimit)
                .map(|reg| (reg, smallvec![]))
                .or_else(|| {
                    f.stack_limit
                        .map(|gv| gen_stack_limit::<M>(f, sigs, &sig, gv))
                });

        // Determine whether a probestack call is required for large enough
        // frames (and the minimum frame size if so).
        let probestack_min_frame = if flags.enable_probestack() {
            assert!(
                !flags.probestack_func_adjusts_sp(),
                "SP-adjusting probestack not supported in new backends"
            );
            Some(1 << flags.probestack_size_log2())
        } else {
            None
        };

        Ok(Self {
            ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
            sig,
            dynamic_stackslots,
            dynamic_type_sizes,
            sized_stackslots,
            stackslots_size,
            outgoing_args_size: 0,
            reg_args: vec![],
            clobbered: vec![],
            spillslots: None,
            fixed_frame_storage_size: 0,
            total_frame_size: None,
            ret_area_ptr: None,
            arg_temp_reg: vec![],
            call_conv,
            flags,
            isa_flags: isa_flags.clone(),
            is_leaf: f.is_leaf(),
            stack_limit,
            probestack_min_frame,
            setup_frame: true,
            _mach: PhantomData,
        })
    }

Declares a heap accessible to the function.

Declares a table accessible to the function.

Find a presumed unique special-purpose function parameter value.

Returns the value of the last purpose parameter, or None if no such parameter exists.

Examples found in repository?
src/legalizer/globalvalue.rs (line 58)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
fn vmctx_addr(inst: ir::Inst, func: &mut ir::Function) {
    // Get the value representing the `vmctx` argument.
    let vmctx = func
        .special_param(ir::ArgumentPurpose::VMContext)
        .expect("Missing vmctx parameter");

    // Replace the `global_value` instruction's value with an alias to the vmctx arg.
    let result = func.dfg.first_result(inst);
    func.dfg.clear_results(inst);
    func.dfg.change_to_alias(result, vmctx);
    func.layout.remove_inst(inst);
}

/// Expand a `global_value` instruction for an iadd_imm global.
fn iadd_imm_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    base: ir::GlobalValue,
    offset: i64,
    global_type: ir::Type,
) {
    let mut pos = FuncCursor::new(func).at_inst(inst);

    // Get the value for the lhs. For tidiness, expand VMContext here so that we avoid
    // `vmctx_addr` which creates an otherwise unneeded value alias.
    let lhs = if let ir::GlobalValueData::VMContext = pos.func.global_values[base] {
        pos.func
            .special_param(ir::ArgumentPurpose::VMContext)
            .expect("Missing vmctx parameter")
    } else {
        pos.ins().global_value(global_type, base)
    };

    // Simply replace the `global_value` instruction with an `iadd_imm`, reusing the result value.
    pos.func.dfg.replace(inst).iadd_imm(lhs, offset);
}

/// Expand a `global_value` instruction for a load global.
fn load_addr(
    inst: ir::Inst,
    func: &mut ir::Function,
    base: ir::GlobalValue,
    offset: ir::immediates::Offset32,
    global_type: ir::Type,
    readonly: bool,
    isa: &dyn TargetIsa,
) {
    // We need to load a pointer from the `base` global value, so insert a new `global_value`
    // instruction. This depends on the iterative legalization loop. Note that the IR verifier
    // detects any cycles in the `load` globals.
    let ptr_ty = isa.pointer_type();
    let mut pos = FuncCursor::new(func).at_inst(inst);
    pos.use_srcloc(inst);

    // Get the value for the base. For tidiness, expand VMContext here so that we avoid
    // `vmctx_addr` which creates an otherwise unneeded value alias.
    let base_addr = if let ir::GlobalValueData::VMContext = pos.func.global_values[base] {
        pos.func
            .special_param(ir::ArgumentPurpose::VMContext)
            .expect("Missing vmctx parameter")
    } else {
        pos.ins().global_value(ptr_ty, base)
    };

    // Global-value loads are always notrap and aligned. They may be readonly.
    let mut mflags = ir::MemFlags::trusted();
    if readonly {
        mflags.set_readonly();
    }

    // Perform the load.
    pos.func
        .dfg
        .replace(inst)
        .load(global_type, mflags, base_addr, offset);
}
More examples
Hide additional examples
src/machinst/lower.rs (line 563)
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    fn gen_arg_setup(&mut self) {
        if let Some(entry_bb) = self.f.layout.entry_block() {
            trace!(
                "gen_arg_setup: entry BB {} args are:\n{:?}",
                entry_bb,
                self.f.dfg.block_params(entry_bb)
            );

            // Make the vmctx available in debuginfo.
            if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
                self.emit_value_label_marks_for_value(vmctx_val);
            }

            for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
                if !self.vcode.abi().arg_is_needed_in_body(i) {
                    continue;
                }
                let regs = writable_value_regs(self.value_regs[*param]);
                for insn in self
                    .vcode
                    .vcode
                    .abi
                    .gen_copy_arg_to_regs(&self.vcode.vcode.sigs, i, regs, &mut self.vregs)
                    .into_iter()
                {
                    self.emit(insn);
                }
                if self.abi().signature().params[i].purpose == ArgumentPurpose::StructReturn {
                    assert!(regs.len() == 1);
                    let ty = self.abi().signature().params[i].value_type;
                    // The ABI implementation must have ensured that a StructReturn
                    // arg is present in the return values.
                    assert!(self
                        .abi()
                        .signature()
                        .returns
                        .iter()
                        .position(|ret| ret.purpose == ArgumentPurpose::StructReturn)
                        .is_some());
                    self.emit(I::gen_move(
                        Writable::from_reg(self.sret_reg.unwrap().regs()[0]),
                        regs.regs()[0].to_reg(),
                        ty,
                    ));
                }
            }
            if let Some(insn) = self
                .vcode
                .vcode
                .abi
                .gen_retval_area_setup(&self.vcode.vcode.sigs, &mut self.vregs)
            {
                self.emit(insn);
            }

            // The `args` instruction below must come first. Finish
            // the current "IR inst" (with a default source location,
            // as for other special instructions inserted during
            // lowering) and continue the scan backward.
            self.finish_ir_inst(Default::default());

            if let Some(insn) = self.vcode.vcode.abi.take_args() {
                self.emit(insn);
            }
        }
    }

    /// Generate the return instruction.
    pub fn gen_return(&mut self, rets: Vec<ValueRegs<Reg>>) {
        let mut out_rets = vec![];

        let mut rets = rets.into_iter();
        for (i, ret) in self
            .abi()
            .signature()
            .returns
            .clone()
            .into_iter()
            .enumerate()
        {
            let regs = if ret.purpose == ArgumentPurpose::StructReturn {
                self.sret_reg.unwrap().clone()
            } else {
                rets.next().unwrap()
            };

            let (regs, insns) = self.vcode.abi().gen_copy_regs_to_retval(
                self.vcode.sigs(),
                i,
                regs,
                &mut self.vregs,
            );
            out_rets.extend(regs);
            for insn in insns {
                self.emit(insn);
            }
        }

        // Hack: generate a virtual instruction that uses vmctx in
        // order to keep it alive for the duration of the function,
        // for the benefit of debuginfo.
        if self.f.dfg.values_labels.is_some() {
            if let Some(vmctx_val) = self.f.special_param(ArgumentPurpose::VMContext) {
                let vmctx_reg = self.value_regs[vmctx_val].only_reg().unwrap();
                self.emit(I::gen_dummy_use(vmctx_reg));
            }
        }

        let inst = self.abi().gen_ret(out_rets);
        self.emit(inst);
    }
src/verifier/mod.rs (line 360)
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    fn verify_global_values(&self, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        let mut cycle_seen = false;
        let mut seen = SparseSet::new();

        'gvs: for gv in self.func.global_values.keys() {
            seen.clear();
            seen.insert(gv);

            let mut cur = gv;
            loop {
                match self.func.global_values[cur] {
                    ir::GlobalValueData::Load { base, .. }
                    | ir::GlobalValueData::IAddImm { base, .. } => {
                        if seen.insert(base).is_some() {
                            if !cycle_seen {
                                errors.report((
                                    gv,
                                    format!("global value cycle: {}", DisplayList(seen.as_slice())),
                                ));
                                // ensures we don't report the cycle multiple times
                                cycle_seen = true;
                            }
                            continue 'gvs;
                        }

                        cur = base;
                    }
                    _ => break,
                }
            }

            match self.func.global_values[gv] {
                ir::GlobalValueData::VMContext { .. } => {
                    if self
                        .func
                        .special_param(ir::ArgumentPurpose::VMContext)
                        .is_none()
                    {
                        errors.report((gv, format!("undeclared vmctx reference {}", gv)));
                    }
                }
                ir::GlobalValueData::IAddImm {
                    base, global_type, ..
                } => {
                    if !global_type.is_int() {
                        errors.report((
                            gv,
                            format!("iadd_imm global value with non-int type {}", global_type),
                        ));
                    } else if let Some(isa) = self.isa {
                        let base_type = self.func.global_values[base].global_type(isa);
                        if global_type != base_type {
                            errors.report((
                                gv,
                                format!(
                                    "iadd_imm type {} differs from operand type {}",
                                    global_type, base_type
                                ),
                            ));
                        }
                    }
                }
                ir::GlobalValueData::Load { base, .. } => {
                    if let Some(isa) = self.isa {
                        let base_type = self.func.global_values[base].global_type(isa);
                        let pointer_type = isa.pointer_type();
                        if base_type != pointer_type {
                            errors.report((
                                gv,
                                format!(
                                    "base {} has type {}, which is not the pointer type {}",
                                    base, base_type, pointer_type
                                ),
                            ));
                        }
                    }
                }
                _ => {}
            }
        }

        // Invalid global values shouldn't stop us from verifying the rest of the function
        Ok(())
    }

Starts collection of debug information.

Changes the destination of a jump or branch instruction. Does nothing if called with a non-jump or non-branch instruction.

Note that this method ignores multi-destination branches like br_table.

Examples found in repository?
src/ir/function.rs (line 309)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    pub fn rewrite_branch_destination(&mut self, inst: Inst, old_dest: Block, new_dest: Block) {
        match self.dfg.analyze_branch(inst) {
            BranchInfo::SingleDest(dest, ..) => {
                if dest == old_dest {
                    self.change_branch_destination(inst, new_dest);
                }
            }

            BranchInfo::Table(table, default_dest) => {
                self.jump_tables[table].iter_mut().for_each(|entry| {
                    if *entry == old_dest {
                        *entry = new_dest;
                    }
                });

                if default_dest == Some(old_dest) {
                    match &mut self.dfg[inst] {
                        InstructionData::BranchTable { destination, .. } => {
                            *destination = new_dest;
                        }
                        _ => panic!(
                            "Unexpected instruction {} having default destination",
                            self.dfg.display_inst(inst)
                        ),
                    }
                }
            }

            BranchInfo::NotABranch => {}
        }
    }

Rewrite the branch destination to new_dest if the destination matches old_dest. Does nothing if called with a non-jump or non-branch instruction.

Unlike change_branch_destination, this method rewrite the destinations of multi-destination branches like br_table.

Examples found in repository?
src/licm.rs (line 88)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
fn create_pre_header(
    header: Block,
    func: &mut Function,
    cfg: &mut ControlFlowGraph,
    domtree: &DominatorTree,
) -> Block {
    let pool = &mut ListPool::<Value>::new();
    let header_args_values = func.dfg.block_params(header).to_vec();
    let header_args_types: Vec<Type> = header_args_values
        .into_iter()
        .map(|val| func.dfg.value_type(val))
        .collect();
    let pre_header = func.dfg.make_block();
    let mut pre_header_args_value: EntityList<Value> = EntityList::new();
    for typ in header_args_types {
        pre_header_args_value.push(func.dfg.append_block_param(pre_header, typ), pool);
    }

    for BlockPredecessor {
        inst: last_inst, ..
    } in cfg.pred_iter(header)
    {
        // We only follow normal edges (not the back edges)
        if !domtree.dominates(header, last_inst, &func.layout) {
            func.rewrite_branch_destination(last_inst, header, pre_header);
        }
    }

    // Inserts the pre-header at the right place in the layout.
    let mut pos = FuncCursor::new(func).at_top(header);
    pos.insert_block(pre_header);
    pos.next_inst();
    pos.ins().jump(header, pre_header_args_value.as_slice(pool));

    pre_header
}

Checks that the specified block can be encoded as a basic block.

On error, returns the first invalid instruction and an error message.

Examples found in repository?
src/verifier/mod.rs (line 508)
507
508
509
510
511
512
    fn encodable_as_bb(&self, block: Block, errors: &mut VerifierErrors) -> VerifierStepResult<()> {
        match self.func.is_block_basic(block) {
            Ok(()) => Ok(()),
            Err((inst, message)) => errors.fatal((inst, self.context(inst), message)),
        }
    }

Returns true if the function is function that doesn’t call any other functions. This is not to be confused with a “leaf function” in Windows terminology.

Examples found in repository?
src/machinst/abi.rs (line 1138)
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    pub fn new<'a>(
        f: &ir::Function,
        isa: &dyn TargetIsa,
        isa_flags: &M::F,
        sigs: &SigSet,
    ) -> CodegenResult<Self> {
        trace!("ABI: func signature {:?}", f.signature);

        let flags = isa.flags().clone();
        let sig = sigs.abi_sig_for_signature(&f.signature);

        let call_conv = f.signature.call_conv;
        // Only these calling conventions are supported.
        debug_assert!(
            call_conv == isa::CallConv::SystemV
                || call_conv == isa::CallConv::Fast
                || call_conv == isa::CallConv::Cold
                || call_conv.extends_windows_fastcall()
                || call_conv == isa::CallConv::AppleAarch64
                || call_conv == isa::CallConv::WasmtimeSystemV
                || call_conv == isa::CallConv::WasmtimeAppleAarch64,
            "Unsupported calling convention: {:?}",
            call_conv
        );

        // Compute sized stackslot locations and total stackslot size.
        let mut sized_stack_offset: u32 = 0;
        let mut sized_stackslots = PrimaryMap::new();
        for (stackslot, data) in f.sized_stack_slots.iter() {
            let off = sized_stack_offset;
            sized_stack_offset += data.size;
            let mask = M::word_bytes() - 1;
            sized_stack_offset = (sized_stack_offset + mask) & !mask;
            debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
            sized_stackslots.push(off);
        }

        // Compute dynamic stackslot locations and total stackslot size.
        let mut dynamic_stackslots = PrimaryMap::new();
        let mut dynamic_stack_offset: u32 = sized_stack_offset;
        for (stackslot, data) in f.dynamic_stack_slots.iter() {
            debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());
            let off = dynamic_stack_offset;
            let ty = f
                .get_concrete_dynamic_ty(data.dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {}", data.dyn_ty));
            dynamic_stack_offset += isa.dynamic_vector_bytes(ty);
            let mask = M::word_bytes() - 1;
            dynamic_stack_offset = (dynamic_stack_offset + mask) & !mask;
            dynamic_stackslots.push(off);
        }
        let stackslots_size = dynamic_stack_offset;

        let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
        for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
            let ty = f
                .get_concrete_dynamic_ty(dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {}", dyn_ty));
            let size = isa.dynamic_vector_bytes(ty);
            dynamic_type_sizes.insert(ty, size);
        }

        // Figure out what instructions, if any, will be needed to check the
        // stack limit. This can either be specified as a special-purpose
        // argument or as a global value which often calculates the stack limit
        // from the arguments.
        let stack_limit =
            get_special_purpose_param_register(f, sigs, &sig, ir::ArgumentPurpose::StackLimit)
                .map(|reg| (reg, smallvec![]))
                .or_else(|| {
                    f.stack_limit
                        .map(|gv| gen_stack_limit::<M>(f, sigs, &sig, gv))
                });

        // Determine whether a probestack call is required for large enough
        // frames (and the minimum frame size if so).
        let probestack_min_frame = if flags.enable_probestack() {
            assert!(
                !flags.probestack_func_adjusts_sp(),
                "SP-adjusting probestack not supported in new backends"
            );
            Some(1 << flags.probestack_size_log2())
        } else {
            None
        };

        Ok(Self {
            ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
            sig,
            dynamic_stackslots,
            dynamic_type_sizes,
            sized_stackslots,
            stackslots_size,
            outgoing_args_size: 0,
            reg_args: vec![],
            clobbered: vec![],
            spillslots: None,
            fixed_frame_storage_size: 0,
            total_frame_size: None,
            ret_area_ptr: None,
            arg_temp_reg: vec![],
            call_conv,
            flags,
            isa_flags: isa_flags.clone(),
            is_leaf: f.is_leaf(),
            stack_limit,
            probestack_min_frame,
            setup_frame: true,
            _mach: PhantomData,
        })
    }

Replace the dst instruction’s data with the src instruction’s data and then remove src.

src and its result values should not be used at all, as any uses would be left dangling after calling this method.

src and dst must have the same number of resulting values, and src’s i^th value must have the same type as dst’s i^th value.

Size occupied by all stack slots associated with this function.

Does not include any padding necessary due to offsets

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
The resulting type after dereferencing.
Dereferences the value.
Mutably dereferences the value.
Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.