1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
//! This module implements lowering (instruction selection) from Cranelift IR
//! to machine instructions with virtual registers. This is *almost* the final
//! machine code, except for register allocation.

use crate::entity::SecondaryMap;
use crate::fx::{FxHashMap, FxHashSet};
use crate::inst_predicates::{has_side_effect_or_load, is_constant_64bit};
use crate::ir::instructions::BranchInfo;
use crate::ir::types::I64;
use crate::ir::{
    ArgumentExtension, Block, Constant, ConstantData, ExternalName, Function, GlobalValueData,
    Inst, InstructionData, MemFlags, Opcode, Signature, SourceLoc, Type, Value, ValueDef,
};
use crate::machinst::{
    ABIBody, BlockIndex, BlockLoweringOrder, LoweredBlock, MachLabel, VCode, VCodeBuilder,
    VCodeInst,
};
use crate::CodegenResult;

use regalloc::{Reg, RegClass, VirtualReg, Writable};

use alloc::boxed::Box;
use alloc::vec::Vec;
use log::debug;
use smallvec::SmallVec;

/// An "instruction color" partitions CLIF instructions by side-effecting ops.
/// All instructions with the same "color" are guaranteed not to be separated by
/// any side-effecting op (for this purpose, loads are also considered
/// side-effecting, to avoid subtle questions w.r.t. the memory model), and
/// furthermore, it is guaranteed that for any two instructions A and B such
/// that color(A) == color(B), either A dominates B and B postdominates A, or
/// vice-versa. (For now, in practice, only ops in the same basic block can ever
/// have the same color, trivially providing the second condition.) Intuitively,
/// this means that the ops of the same color must always execute "together", as
/// part of one atomic contiguous section of the dynamic execution trace, and
/// they can be freely permuted (modulo true dataflow dependencies) without
/// affecting program behavior.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct InstColor(u32);
impl InstColor {
    fn new(n: u32) -> InstColor {
        InstColor(n)
    }

    /// Get an arbitrary index representing this color. The index is unique
    /// *within a single function compilation*, but indices may be reused across
    /// functions.
    pub fn get(self) -> u32 {
        self.0
    }
}

/// A context that machine-specific lowering code can use to emit lowered
/// instructions. This is the view of the machine-independent per-function
/// lowering context that is seen by the machine backend.
pub trait LowerCtx {
    /// The instruction type for which this lowering framework is instantiated.
    type I: VCodeInst;

    // Function-level queries:

    /// Get the `ABIBody`.
    fn abi(&mut self) -> &dyn ABIBody<I = Self::I>;
    /// Get the (virtual) register that receives the return value. A return
    /// instruction should lower into a sequence that fills this register. (Why
    /// not allow the backend to specify its own result register for the return?
    /// Because there may be multiple return points.)
    fn retval(&self, idx: usize) -> Writable<Reg>;

    // General instruction queries:

    /// Get the instdata for a given IR instruction.
    fn data(&self, ir_inst: Inst) -> &InstructionData;
    /// Get the controlling type for a polymorphic IR instruction.
    fn ty(&self, ir_inst: Inst) -> Type;
    /// Get the target for a call instruction, as an `ExternalName`. Returns a tuple
    /// providing this name and the "relocation distance", i.e., whether the backend
    /// can assume the target will be "nearby" (within some small offset) or an
    /// arbitrary address. (This comes from the `colocated` bit in the CLIF.)
    fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)>;
    /// Get the signature for a call or call-indirect instruction.
    fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature>;
    /// Get the symbol name, relocation distance estimate, and offset for a
    /// symbol_value instruction.
    fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)>;
    /// Returns the memory flags of a given memory access.
    fn memflags(&self, ir_inst: Inst) -> Option<MemFlags>;
    /// Get the source location for a given instruction.
    fn srcloc(&self, ir_inst: Inst) -> SourceLoc;
    /// Get the side-effect color of the given instruction (specifically, at the
    /// program point just prior to the instruction). The "color" changes at
    /// every side-effecting op; the backend should not try to merge across
    /// side-effect colors unless the op being merged is known to be pure.
    fn inst_color(&self, ir_inst: Inst) -> InstColor;

    // Instruction input/output queries:

    /// Get the number of inputs to the given IR instruction.
    fn num_inputs(&self, ir_inst: Inst) -> usize;
    /// Get the number of outputs to the given IR instruction.
    fn num_outputs(&self, ir_inst: Inst) -> usize;
    /// Get the type for an instruction's input.
    fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type;
    /// Get the type for an instruction's output.
    fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type;
    /// Get the value of a constant instruction (`iconst`, etc.) as a 64-bit
    /// value, if possible.
    fn get_constant(&self, ir_inst: Inst) -> Option<u64>;
    /// Get the input in any combination of three forms:
    ///
    /// - An instruction, if the same color as this instruction or if the
    ///   producing instruction has no side effects (thus in both cases
    ///   mergeable);
    /// - A constant, if the value is a constant;
    /// - A register.
    ///
    /// The instruction input may be available in some or all of these
    /// forms. More than one is possible: e.g., it may be produced by an
    /// instruction in the same block, but may also have been forced into a
    /// register already by an earlier op. It will *always* be available
    /// in a register, at least.
    ///
    /// If the backend uses the register, rather than one of the other
    /// forms (constant or merging of the producing op), it must call
    /// `use_input_reg()` to ensure the producing inst is actually lowered
    /// as well. Failing to do so may result in the instruction that generates
    /// this value never being generated, thus resulting in incorrect execution.
    /// For correctness, backends should thus wrap `get_input()` and
    /// `use_input_regs()` with helpers that return a register only after
    /// ensuring it is marked as used.
    fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput;
    /// Get the `idx`th output register of the given IR instruction. When
    /// `backend.lower_inst_to_regs(ctx, inst)` is called, it is expected that
    /// the backend will write results to these output register(s).
    fn get_output(&self, ir_inst: Inst, idx: usize) -> Writable<Reg>;

    // Codegen primitives: allocate temps, emit instructions, set result registers,
    // ask for an input to be gen'd into a register.

    /// Get a new temp.
    fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg>;
    /// Emit a machine instruction.
    fn emit(&mut self, mach_inst: Self::I);
    /// Indicate that the given input uses the register returned by
    /// `get_input()`. Codegen may not happen otherwise for the producing
    /// instruction if it has no side effects and no uses.
    fn use_input_reg(&mut self, input: LowerInput);
    /// Is the given register output needed after the given instruction? Allows
    /// instructions with multiple outputs to make fine-grained decisions on
    /// which outputs to actually generate.
    fn is_reg_needed(&self, ir_inst: Inst, reg: Reg) -> bool;
    /// Retrieve constant data given a handle.
    fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData;
}

/// A representation of all of the ways in which an instruction input is
/// available: as a producing instruction (in the same color-partition), as a
/// constant, and/or in an existing register. See [LowerCtx::get_input] for more
/// details.
#[derive(Clone, Copy, Debug)]
pub struct LowerInput {
    /// The value is live in a register. This option is always available. Call
    /// [LowerCtx::use_input_reg()] if the register is used.
    pub reg: Reg,
    /// An instruction produces this value; the instruction's result index that
    /// produces this value is given.
    pub inst: Option<(Inst, usize)>,
    /// The value is a known constant.
    pub constant: Option<u64>,
}

/// A machine backend.
pub trait LowerBackend {
    /// The machine instruction type.
    type MInst: VCodeInst;

    /// Lower a single instruction.
    ///
    /// For a branch, this function should not generate the actual branch
    /// instruction. However, it must force any values it needs for the branch
    /// edge (block-param actuals) into registers, because the actual branch
    /// generation (`lower_branch_group()`) happens *after* any possible merged
    /// out-edge.
    fn lower<C: LowerCtx<I = Self::MInst>>(&self, ctx: &mut C, inst: Inst) -> CodegenResult<()>;

    /// Lower a block-terminating group of branches (which together can be seen
    /// as one N-way branch), given a vcode MachLabel for each target.
    fn lower_branch_group<C: LowerCtx<I = Self::MInst>>(
        &self,
        ctx: &mut C,
        insts: &[Inst],
        targets: &[MachLabel],
        fallthrough: Option<MachLabel>,
    ) -> CodegenResult<()>;

    /// A bit of a hack: give a fixed register that always holds the result of a
    /// `get_pinned_reg` instruction, if known.  This allows elision of moves
    /// into the associated vreg, instead using the real reg directly.
    fn maybe_pinned_reg(&self) -> Option<Reg> {
        None
    }
}

/// Machine-independent lowering driver / machine-instruction container. Maintains a correspondence
/// from original Inst to MachInsts.
pub struct Lower<'func, I: VCodeInst> {
    /// The function to lower.
    f: &'func Function,

    /// Lowered machine instructions.
    vcode: VCodeBuilder<I>,

    /// Mapping from `Value` (SSA value in IR) to virtual register.
    value_regs: SecondaryMap<Value, Reg>,

    /// Return-value vregs.
    retval_regs: Vec<(Reg, ArgumentExtension)>,

    /// Instruction colors.
    inst_colors: SecondaryMap<Inst, InstColor>,

    /// Instruction constant values, if known.
    inst_constants: FxHashMap<Inst, u64>,

    /// Instruction has a side-effect and must be codegen'd.
    inst_needed: SecondaryMap<Inst, bool>,

    /// Value (vreg) is needed and producer must be codegen'd.
    vreg_needed: Vec<bool>,

    /// Next virtual register number to allocate.
    next_vreg: u32,

    /// Insts in reverse block order, before final copy to vcode.
    block_insts: Vec<(SourceLoc, I)>,

    /// Ranges in `block_insts` constituting BBs.
    block_ranges: Vec<(usize, usize)>,

    /// Instructions collected for the BB in progress, in reverse order, with
    /// source-locs attached.
    bb_insts: Vec<(SourceLoc, I)>,

    /// Instructions collected for the CLIF inst in progress, in forward order.
    ir_insts: Vec<I>,

    /// The register to use for GetPinnedReg, if any, on this architecture.
    pinned_reg: Option<Reg>,
}

/// Notion of "relocation distance". This gives an estimate of how far away a symbol will be from a
/// reference.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum RelocDistance {
    /// Target of relocation is "nearby". The threshold for this is fuzzy but should be interpreted
    /// as approximately "within the compiled output of one module"; e.g., within AArch64's +/-
    /// 128MB offset. If unsure, use `Far` instead.
    Near,
    /// Target of relocation could be anywhere in the address space.
    Far,
}

fn alloc_vreg(
    value_regs: &mut SecondaryMap<Value, Reg>,
    regclass: RegClass,
    value: Value,
    next_vreg: &mut u32,
) -> VirtualReg {
    if value_regs[value].is_invalid() {
        // default value in map.
        let v = *next_vreg;
        *next_vreg += 1;
        value_regs[value] = Reg::new_virtual(regclass, v);
    }
    value_regs[value].as_virtual_reg().unwrap()
}

enum GenerateReturn {
    Yes,
    No,
}

impl<'func, I: VCodeInst> Lower<'func, I> {
    /// Prepare a new lowering context for the given IR function.
    pub fn new(
        f: &'func Function,
        abi: Box<dyn ABIBody<I = I>>,
        block_order: BlockLoweringOrder,
    ) -> CodegenResult<Lower<'func, I>> {
        let mut vcode = VCodeBuilder::new(abi, block_order);

        let mut next_vreg: u32 = 0;

        let mut value_regs = SecondaryMap::with_default(Reg::invalid());

        // Assign a vreg to each block param and each inst result.
        for bb in f.layout.blocks() {
            for &param in f.dfg.block_params(bb) {
                let ty = f.dfg.value_type(param);
                let vreg = alloc_vreg(&mut value_regs, I::rc_for_type(ty)?, param, &mut next_vreg);
                vcode.set_vreg_type(vreg, ty);
                debug!("bb {} param {}: vreg {:?}", bb, param, vreg);
            }
            for inst in f.layout.block_insts(bb) {
                for &result in f.dfg.inst_results(inst) {
                    let ty = f.dfg.value_type(result);
                    let vreg =
                        alloc_vreg(&mut value_regs, I::rc_for_type(ty)?, result, &mut next_vreg);
                    vcode.set_vreg_type(vreg, ty);
                    debug!(
                        "bb {} inst {} ({:?}): result vreg {:?}",
                        bb, inst, f.dfg[inst], vreg
                    );
                }
            }
        }

        // Assign a vreg to each return value.
        let mut retval_regs = vec![];
        for ret in &f.signature.returns {
            let v = next_vreg;
            next_vreg += 1;
            let regclass = I::rc_for_type(ret.value_type)?;
            let vreg = Reg::new_virtual(regclass, v);
            retval_regs.push((vreg, ret.extension));
            vcode.set_vreg_type(vreg.as_virtual_reg().unwrap(), ret.value_type);
        }

        // Compute instruction colors, find constant instructions, and find instructions with
        // side-effects, in one combined pass.
        let mut cur_color = 0;
        let mut inst_colors = SecondaryMap::with_default(InstColor::new(0));
        let mut inst_constants = FxHashMap::default();
        let mut inst_needed = SecondaryMap::with_default(false);
        for bb in f.layout.blocks() {
            cur_color += 1;
            for inst in f.layout.block_insts(bb) {
                let side_effect = has_side_effect_or_load(f, inst);

                // Assign colors. A new color is chosen *after* any side-effecting instruction.
                inst_colors[inst] = InstColor::new(cur_color);
                debug!("bb {} inst {} has color {}", bb, inst, cur_color);
                if side_effect {
                    debug!(" -> side-effecting");
                    inst_needed[inst] = true;
                    cur_color += 1;
                }

                // Determine if this is a constant; if so, add to the table.
                if let Some(c) = is_constant_64bit(f, inst) {
                    debug!(" -> constant: {}", c);
                    inst_constants.insert(inst, c);
                }
            }
        }

        let vreg_needed = std::iter::repeat(false).take(next_vreg as usize).collect();

        Ok(Lower {
            f,
            vcode,
            value_regs,
            retval_regs,
            inst_colors,
            inst_constants,
            inst_needed,
            vreg_needed,
            next_vreg,
            block_insts: vec![],
            block_ranges: vec![],
            bb_insts: vec![],
            ir_insts: vec![],
            pinned_reg: None,
        })
    }

    fn gen_arg_setup(&mut self) {
        if let Some(entry_bb) = self.f.layout.entry_block() {
            debug!(
                "gen_arg_setup: entry BB {} args are:\n{:?}",
                entry_bb,
                self.f.dfg.block_params(entry_bb)
            );
            for (i, param) in self.f.dfg.block_params(entry_bb).iter().enumerate() {
                let reg = Writable::from_reg(self.value_regs[*param]);
                let insn = self.vcode.abi().gen_copy_arg_to_reg(i, reg);
                self.emit(insn);
            }
            if let Some(insn) = self.vcode.abi().gen_retval_area_setup() {
                self.emit(insn);
            }
        }
    }

    fn gen_retval_setup(&mut self, gen_ret_inst: GenerateReturn) {
        let retval_regs = self.retval_regs.clone();
        for (i, (reg, ext)) in retval_regs.into_iter().enumerate() {
            let reg = Writable::from_reg(reg);
            let insns = self.vcode.abi().gen_copy_reg_to_retval(i, reg, ext);
            for insn in insns {
                self.emit(insn);
            }
        }
        let inst = match gen_ret_inst {
            GenerateReturn::Yes => self.vcode.abi().gen_ret(),
            GenerateReturn::No => self.vcode.abi().gen_epilogue_placeholder(),
        };
        self.emit(inst);
    }

    fn lower_edge(&mut self, pred: Block, inst: Inst, succ: Block) -> CodegenResult<()> {
        debug!("lower_edge: pred {} succ {}", pred, succ);

        let num_args = self.f.dfg.block_params(succ).len();
        debug_assert!(num_args == self.f.dfg.inst_variable_args(inst).len());

        // Most blocks have no params, so skip all the hoop-jumping below and make an early exit.
        if num_args == 0 {
            return Ok(());
        }

        // Make up two vectors of info:
        //
        // * one for dsts which are to be assigned constants.  We'll deal with those second, so
        //   as to minimise live ranges.
        //
        // * one for dsts whose sources are non-constants.

        let mut const_bundles = SmallVec::<[(Type, Writable<Reg>, u64); 16]>::new();
        let mut var_bundles = SmallVec::<[(Type, Writable<Reg>, Reg); 16]>::new();

        let mut i = 0;
        for (dst_val, src_val) in self
            .f
            .dfg
            .block_params(succ)
            .iter()
            .zip(self.f.dfg.inst_variable_args(inst).iter())
        {
            let src_val = self.f.dfg.resolve_aliases(*src_val);
            let ty = self.f.dfg.value_type(src_val);

            debug_assert!(ty == self.f.dfg.value_type(*dst_val));
            let dst_reg = self.value_regs[*dst_val];

            let input = self.get_input_for_val(inst, src_val);
            debug!("jump arg {} is {}, reg {:?}", i, src_val, input.reg);
            i += 1;

            if let Some(c) = input.constant {
                const_bundles.push((ty, Writable::from_reg(dst_reg), c));
            } else {
                self.use_input_reg(input);
                let src_reg = input.reg;
                // Skip self-assignments.  Not only are they pointless, they falsely trigger the
                // overlap-check below and hence can cause a lot of unnecessary copying through
                // temporaries.
                if dst_reg != src_reg {
                    var_bundles.push((ty, Writable::from_reg(dst_reg), src_reg));
                }
            }
        }

        // Deal first with the moves whose sources are variables.

        // FIXME: use regalloc.rs' SparseSetU here.  This would avoid all heap allocation
        // for cases of up to circa 16 args.  Currently not possible because regalloc.rs
        // does not export it.
        let mut src_reg_set = FxHashSet::<Reg>::default();
        for (_, _, src_reg) in &var_bundles {
            src_reg_set.insert(*src_reg);
        }
        let mut overlaps = false;
        for (_, dst_reg, _) in &var_bundles {
            if src_reg_set.contains(&dst_reg.to_reg()) {
                overlaps = true;
                break;
            }
        }

        // If, as is mostly the case, the source and destination register sets are non
        // overlapping, then we can copy directly, so as to save the register allocator work.
        if !overlaps {
            for (ty, dst_reg, src_reg) in &var_bundles {
                self.emit(I::gen_move(*dst_reg, *src_reg, *ty));
            }
        } else {
            // There's some overlap, so play safe and copy via temps.
            let mut tmp_regs = SmallVec::<[Writable<Reg>; 16]>::new();
            for (ty, _, _) in &var_bundles {
                tmp_regs.push(self.alloc_tmp(I::rc_for_type(*ty)?, *ty));
            }
            for ((ty, _, src_reg), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) {
                self.emit(I::gen_move(*tmp_reg, *src_reg, *ty));
            }
            for ((ty, dst_reg, _), tmp_reg) in var_bundles.iter().zip(tmp_regs.iter()) {
                self.emit(I::gen_move(*dst_reg, (*tmp_reg).to_reg(), *ty));
            }
        }

        // Now, finally, deal with the moves whose sources are constants.
        for (ty, dst_reg, const_u64) in &const_bundles {
            for inst in I::gen_constant(*dst_reg, *const_u64, *ty).into_iter() {
                self.emit(inst);
            }
        }

        Ok(())
    }

    fn lower_clif_block<B: LowerBackend<MInst = I>>(
        &mut self,
        backend: &B,
        block: Block,
    ) -> CodegenResult<()> {
        // Lowering loop:
        // - For each non-branch instruction, in reverse order:
        //   - If side-effecting (load, store, branch/call/return, possible trap), or if
        //     used outside of this block, or if demanded by another inst, then lower.
        //
        // That's it! Lowering of side-effecting ops will force all *needed*
        // (live) non-side-effecting ops to be lowered at the right places, via
        // the `use_input_reg()` callback on the `LowerCtx` (that's us). That's
        // because `use_input_reg()` sets the eager/demand bit for any insts
        // whose result registers are used.
        //
        // We build up the BB in reverse instruction order in `bb_insts`.
        // Because the machine backend calls `ctx.emit()` in forward order, we
        // collect per-IR-inst lowered instructions in `ir_insts`, then reverse
        // these and append to `bb_insts` as we go backward through the block.
        // `bb_insts` are then reversed again and appended to the VCode at the
        // end of the BB (in the toplevel driver `lower()`).
        for inst in self.f.layout.block_insts(block).rev() {
            let data = &self.f.dfg[inst];
            let value_needed = self
                .f
                .dfg
                .inst_results(inst)
                .iter()
                .any(|&result| self.vreg_needed[self.value_regs[result].get_index()]);
            debug!(
                "lower_clif_block: block {} inst {} ({:?}) is_branch {} inst_needed {} value_needed {}",
                block,
                inst,
                data,
                data.opcode().is_branch(),
                self.inst_needed[inst],
                value_needed,
            );
            if self.f.dfg[inst].opcode().is_branch() {
                continue;
            }
            // Normal instruction: codegen if eager bit is set. (Other instructions may also be
            // codegened if not eager when they are used by another instruction.)
            if self.inst_needed[inst] || value_needed {
                debug!("lowering: inst {}: {:?}", inst, self.f.dfg[inst]);
                backend.lower(self, inst)?;
            }
            if data.opcode().is_return() {
                // Return: handle specially, using ABI-appropriate sequence.
                let gen_ret = if data.opcode() == Opcode::Return {
                    GenerateReturn::Yes
                } else {
                    debug_assert!(data.opcode() == Opcode::FallthroughReturn);
                    GenerateReturn::No
                };
                self.gen_retval_setup(gen_ret);
            }

            let loc = self.srcloc(inst);
            self.finish_ir_inst(loc);
        }
        Ok(())
    }

    fn finish_ir_inst(&mut self, loc: SourceLoc) {
        for inst in self.ir_insts.drain(..).rev() {
            self.bb_insts.push((loc, inst));
        }
    }

    fn finish_bb(&mut self) {
        let start = self.block_insts.len();
        for pair in self.bb_insts.drain(..).rev() {
            self.block_insts.push(pair);
        }
        let end = self.block_insts.len();
        self.block_ranges.push((start, end));
    }

    fn copy_bbs_to_vcode(&mut self) {
        for &(start, end) in self.block_ranges.iter().rev() {
            for &(loc, ref inst) in &self.block_insts[start..end] {
                self.vcode.set_srcloc(loc);
                self.vcode.push(inst.clone());
            }
            self.vcode.end_bb();
        }
    }

    fn lower_clif_branches<B: LowerBackend<MInst = I>>(
        &mut self,
        backend: &B,
        block: Block,
        branches: &SmallVec<[Inst; 2]>,
        targets: &SmallVec<[MachLabel; 2]>,
        maybe_fallthrough: Option<MachLabel>,
    ) -> CodegenResult<()> {
        debug!(
            "lower_clif_branches: block {} branches {:?} targets {:?} maybe_fallthrough {:?}",
            block, branches, targets, maybe_fallthrough
        );
        backend.lower_branch_group(self, branches, targets, maybe_fallthrough)?;
        let loc = self.srcloc(branches[0]);
        self.finish_ir_inst(loc);
        Ok(())
    }

    fn collect_branches_and_targets(
        &self,
        bindex: BlockIndex,
        _bb: Block,
        branches: &mut SmallVec<[Inst; 2]>,
        targets: &mut SmallVec<[MachLabel; 2]>,
    ) {
        branches.clear();
        targets.clear();
        let mut last_inst = None;
        for &(inst, succ) in self.vcode.block_order().succ_indices(bindex) {
            // Avoid duplicates: this ensures a br_table is only inserted once.
            if last_inst != Some(inst) {
                branches.push(inst);
            } else {
                debug_assert!(self.f.dfg[inst].opcode() == Opcode::BrTable);
                debug_assert!(branches.len() == 1);
            }
            last_inst = Some(inst);
            targets.push(MachLabel::from_block(succ));
        }
    }

    /// Lower the function.
    pub fn lower<B: LowerBackend<MInst = I>>(mut self, backend: &B) -> CodegenResult<VCode<I>> {
        debug!("about to lower function: {:?}", self.f);

        // Initialize the ABI object, giving it a temp if requested.
        let maybe_tmp = if self.vcode.abi().temp_needed() {
            Some(self.alloc_tmp(RegClass::I64, I64))
        } else {
            None
        };
        self.vcode.abi().init(maybe_tmp);

        // Get the pinned reg here (we only parameterize this function on `B`,
        // not the whole `Lower` impl).
        self.pinned_reg = backend.maybe_pinned_reg();

        self.vcode.set_entry(0);

        // Reused vectors for branch lowering.
        let mut branches: SmallVec<[Inst; 2]> = SmallVec::new();
        let mut targets: SmallVec<[MachLabel; 2]> = SmallVec::new();

        // get a copy of the lowered order; we hold this separately because we
        // need a mut ref to the vcode to mutate it below.
        let lowered_order: SmallVec<[LoweredBlock; 64]> = self
            .vcode
            .block_order()
            .lowered_order()
            .iter()
            .cloned()
            .collect();

        // Main lowering loop over lowered blocks.
        for (bindex, lb) in lowered_order.iter().enumerate().rev() {
            let bindex = bindex as BlockIndex;

            // Lower the block body in reverse order (see comment in
            // `lower_clif_block()` for rationale).

            // End branches.
            if let Some(bb) = lb.orig_block() {
                self.collect_branches_and_targets(bindex, bb, &mut branches, &mut targets);
                if branches.len() > 0 {
                    let maybe_fallthrough = if (bindex + 1) < (lowered_order.len() as BlockIndex) {
                        Some(MachLabel::from_block(bindex + 1))
                    } else {
                        None
                    };
                    self.lower_clif_branches(backend, bb, &branches, &targets, maybe_fallthrough)?;
                    self.finish_ir_inst(self.srcloc(branches[0]));
                }
            } else {
                // If no orig block, this must be a pure edge block; get the successor and
                // emit a jump.
                let (_, succ) = self.vcode.block_order().succ_indices(bindex)[0];
                self.emit(I::gen_jump(MachLabel::from_block(succ)));
                self.finish_ir_inst(SourceLoc::default());
            }

            // Out-edge phi moves.
            if let Some((pred, inst, succ)) = lb.out_edge() {
                self.lower_edge(pred, inst, succ)?;
                self.finish_ir_inst(SourceLoc::default());
            }
            // Original block body.
            if let Some(bb) = lb.orig_block() {
                self.lower_clif_block(backend, bb)?;
            }
            // In-edge phi moves.
            if let Some((pred, inst, succ)) = lb.in_edge() {
                self.lower_edge(pred, inst, succ)?;
                self.finish_ir_inst(SourceLoc::default());
            }

            if bindex == 0 {
                // Set up the function with arg vreg inits.
                self.gen_arg_setup();
                self.finish_ir_inst(SourceLoc::default());
            }

            self.finish_bb();
        }

        self.copy_bbs_to_vcode();

        // Now that we've emitted all instructions into the VCodeBuilder, let's build the VCode.
        let vcode = self.vcode.build();
        debug!("built vcode: {:?}", vcode);

        Ok(vcode)
    }

    /// Get the actual inputs for a value. This is the implementation for
    /// `get_input()` but starting from the SSA value, which is not exposed to
    /// the backend.
    fn get_input_for_val(&self, at_inst: Inst, val: Value) -> LowerInput {
        debug!("get_input_for_val: val {} at inst {}", val, at_inst);
        let mut reg = self.value_regs[val];
        debug!(" -> reg {:?}", reg);
        assert!(reg.is_valid());
        let mut inst = match self.f.dfg.value_def(val) {
            // OK to merge source instruction if (i) we have a source
            // instruction, and either (ii-a) it has no side effects, or (ii-b)
            // it has the same color as this instruction.
            ValueDef::Result(src_inst, result_idx) => {
                debug!(" -> src inst {}", src_inst);
                debug!(
                    " -> has side effect: {}",
                    has_side_effect_or_load(self.f, src_inst)
                );
                debug!(
                    " -> our color is {:?}, src inst is {:?}",
                    self.inst_color(at_inst),
                    self.inst_color(src_inst)
                );
                if !has_side_effect_or_load(self.f, src_inst)
                    || self.inst_color(at_inst) == self.inst_color(src_inst)
                {
                    Some((src_inst, result_idx))
                } else {
                    None
                }
            }
            _ => None,
        };
        let constant = inst.and_then(|(inst, _)| self.get_constant(inst));

        // Pinned-reg hack: if backend specifies a fixed pinned register, use it
        // directly when we encounter a GetPinnedReg op, rather than lowering
        // the actual op, and do not return the source inst to the caller; the
        // value comes "out of the ether" and we will not force generation of
        // the superfluous move.
        if let Some((i, _)) = inst {
            if self.f.dfg[i].opcode() == Opcode::GetPinnedReg {
                if let Some(pr) = self.pinned_reg {
                    reg = pr;
                }
                inst = None;
            }
        }

        LowerInput {
            reg,
            inst,
            constant,
        }
    }
}

impl<'func, I: VCodeInst> LowerCtx for Lower<'func, I> {
    type I = I;

    fn abi(&mut self) -> &dyn ABIBody<I = I> {
        self.vcode.abi()
    }

    fn retval(&self, idx: usize) -> Writable<Reg> {
        Writable::from_reg(self.retval_regs[idx].0)
    }

    fn data(&self, ir_inst: Inst) -> &InstructionData {
        &self.f.dfg[ir_inst]
    }

    fn ty(&self, ir_inst: Inst) -> Type {
        self.f.dfg.ctrl_typevar(ir_inst)
    }

    fn call_target<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance)> {
        match &self.f.dfg[ir_inst] {
            &InstructionData::Call { func_ref, .. }
            | &InstructionData::FuncAddr { func_ref, .. } => {
                let funcdata = &self.f.dfg.ext_funcs[func_ref];
                let dist = funcdata.reloc_distance();
                Some((&funcdata.name, dist))
            }
            _ => None,
        }
    }

    fn call_sig<'b>(&'b self, ir_inst: Inst) -> Option<&'b Signature> {
        match &self.f.dfg[ir_inst] {
            &InstructionData::Call { func_ref, .. } => {
                let funcdata = &self.f.dfg.ext_funcs[func_ref];
                Some(&self.f.dfg.signatures[funcdata.signature])
            }
            &InstructionData::CallIndirect { sig_ref, .. } => Some(&self.f.dfg.signatures[sig_ref]),
            _ => None,
        }
    }

    fn symbol_value<'b>(&'b self, ir_inst: Inst) -> Option<(&'b ExternalName, RelocDistance, i64)> {
        match &self.f.dfg[ir_inst] {
            &InstructionData::UnaryGlobalValue { global_value, .. } => {
                let gvdata = &self.f.global_values[global_value];
                match gvdata {
                    &GlobalValueData::Symbol {
                        ref name,
                        ref offset,
                        ..
                    } => {
                        let offset = offset.bits();
                        let dist = gvdata.maybe_reloc_distance().unwrap();
                        Some((name, dist, offset))
                    }
                    _ => None,
                }
            }
            _ => None,
        }
    }

    fn memflags(&self, ir_inst: Inst) -> Option<MemFlags> {
        match &self.f.dfg[ir_inst] {
            &InstructionData::Load { flags, .. }
            | &InstructionData::LoadComplex { flags, .. }
            | &InstructionData::Store { flags, .. }
            | &InstructionData::StoreComplex { flags, .. } => Some(flags),
            _ => None,
        }
    }

    fn srcloc(&self, ir_inst: Inst) -> SourceLoc {
        self.f.srclocs[ir_inst]
    }

    fn inst_color(&self, ir_inst: Inst) -> InstColor {
        self.inst_colors[ir_inst]
    }

    fn num_inputs(&self, ir_inst: Inst) -> usize {
        self.f.dfg.inst_args(ir_inst).len()
    }

    fn num_outputs(&self, ir_inst: Inst) -> usize {
        self.f.dfg.inst_results(ir_inst).len()
    }

    fn input_ty(&self, ir_inst: Inst, idx: usize) -> Type {
        let val = self.f.dfg.inst_args(ir_inst)[idx];
        let val = self.f.dfg.resolve_aliases(val);
        self.f.dfg.value_type(val)
    }

    fn output_ty(&self, ir_inst: Inst, idx: usize) -> Type {
        self.f.dfg.value_type(self.f.dfg.inst_results(ir_inst)[idx])
    }

    fn get_constant(&self, ir_inst: Inst) -> Option<u64> {
        self.inst_constants.get(&ir_inst).cloned()
    }

    fn get_input(&self, ir_inst: Inst, idx: usize) -> LowerInput {
        let val = self.f.dfg.inst_args(ir_inst)[idx];
        let val = self.f.dfg.resolve_aliases(val);
        self.get_input_for_val(ir_inst, val)
    }

    fn get_output(&self, ir_inst: Inst, idx: usize) -> Writable<Reg> {
        let val = self.f.dfg.inst_results(ir_inst)[idx];
        Writable::from_reg(self.value_regs[val])
    }

    fn alloc_tmp(&mut self, rc: RegClass, ty: Type) -> Writable<Reg> {
        let v = self.next_vreg;
        self.next_vreg += 1;
        let vreg = Reg::new_virtual(rc, v);
        self.vcode.set_vreg_type(vreg.as_virtual_reg().unwrap(), ty);
        Writable::from_reg(vreg)
    }

    fn emit(&mut self, mach_inst: I) {
        self.ir_insts.push(mach_inst);
    }

    fn use_input_reg(&mut self, input: LowerInput) {
        debug!("use_input_reg: vreg {:?} is needed", input.reg);
        self.vreg_needed[input.reg.get_index()] = true;
    }

    fn is_reg_needed(&self, ir_inst: Inst, reg: Reg) -> bool {
        self.inst_needed[ir_inst] || self.vreg_needed[reg.get_index()]
    }

    fn get_constant_data(&self, constant_handle: Constant) -> &ConstantData {
        self.f.dfg.constants.get(constant_handle)
    }
}

/// Visit all successors of a block with a given visitor closure.
pub(crate) fn visit_block_succs<F: FnMut(Inst, Block)>(f: &Function, block: Block, mut visit: F) {
    for inst in f.layout.block_likely_branches(block) {
        if f.dfg[inst].opcode().is_branch() {
            visit_branch_targets(f, block, inst, &mut visit);
        }
    }
}

fn visit_branch_targets<F: FnMut(Inst, Block)>(
    f: &Function,
    block: Block,
    inst: Inst,
    visit: &mut F,
) {
    if f.dfg[inst].opcode() == Opcode::Fallthrough {
        visit(inst, f.layout.next_block(block).unwrap());
    } else {
        match f.dfg[inst].analyze_branch(&f.dfg.value_lists) {
            BranchInfo::NotABranch => {}
            BranchInfo::SingleDest(dest, _) => {
                visit(inst, dest);
            }
            BranchInfo::Table(table, maybe_dest) => {
                if let Some(dest) = maybe_dest {
                    visit(inst, dest);
                }
                for &dest in f.jump_tables[table].as_slice() {
                    visit(inst, dest);
                }
            }
        }
    }
}