1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//! Intermediate representation of a function.
//!
//! The `Function` struct defined in this module owns all of its extended basic blocks and
//! instructions.

use binemit::CodeOffset;
use entity::{EntityMap, PrimaryMap};
use ir;
use ir::{DataFlowGraph, ExternalName, Layout, Signature};
use ir::{
    Ebb, ExtFuncData, FuncRef, GlobalValue, GlobalValueData, Heap, HeapData, JumpTable,
    JumpTableData, SigRef, StackSlot, StackSlotData,
};
use ir::{EbbOffsets, InstEncodings, JumpTables, SourceLocs, StackSlots, ValueLocations};
use isa::{EncInfo, Encoding, Legalize, TargetIsa};
use settings::CallConv;
use std::fmt;
use write::write_function;

/// A function.
///
/// Functions can be cloned, but it is not a very fast operation.
/// The clone will have all the same entity numbers as the original.
#[derive(Clone)]
pub struct Function {
    /// Name of this function. Mostly used by `.clif` files.
    pub name: ExternalName,

    /// Signature of this function.
    pub signature: Signature,

    /// Stack slots allocated in this function.
    pub stack_slots: StackSlots,

    /// If not `None`, represents the address that the stack pointer should
    /// be checked against.
    pub stack_limit: Option<ir::GlobalValue>,

    /// Global values referenced.
    pub global_values: PrimaryMap<ir::GlobalValue, ir::GlobalValueData>,

    /// Heaps referenced.
    pub heaps: PrimaryMap<ir::Heap, ir::HeapData>,

    /// Jump tables used in this function.
    pub jump_tables: JumpTables,

    /// Data flow graph containing the primary definition of all instructions, EBBs and values.
    pub dfg: DataFlowGraph,

    /// Layout of EBBs and instructions in the function body.
    pub layout: Layout,

    /// Encoding recipe and bits for the legal instructions.
    /// Illegal instructions have the `Encoding::default()` value.
    pub encodings: InstEncodings,

    /// Location assigned to every value.
    pub locations: ValueLocations,

    /// Code offsets of the EBB headers.
    ///
    /// This information is only transiently available after the `binemit::relax_branches` function
    /// computes it, and it can easily be recomputed by calling that function. It is not included
    /// in the textual IR format.
    pub offsets: EbbOffsets,

    /// Source locations.
    ///
    /// Track the original source location for each instruction. The source locations are not
    /// interpreted by Cranelift, only preserved.
    pub srclocs: SourceLocs,
}

impl Function {
    /// Create a function with the given name and signature.
    pub fn with_name_signature(name: ExternalName, sig: Signature) -> Self {
        Self {
            name,
            signature: sig,
            stack_slots: StackSlots::new(),
            stack_limit: None,
            global_values: PrimaryMap::new(),
            heaps: PrimaryMap::new(),
            jump_tables: PrimaryMap::new(),
            dfg: DataFlowGraph::new(),
            layout: Layout::new(),
            encodings: EntityMap::new(),
            locations: EntityMap::new(),
            offsets: EntityMap::new(),
            srclocs: EntityMap::new(),
        }
    }

    /// Clear all data structures in this function.
    pub fn clear(&mut self) {
        self.signature.clear(CallConv::Fast);
        self.stack_slots.clear();
        self.global_values.clear();
        self.heaps.clear();
        self.jump_tables.clear();
        self.dfg.clear();
        self.layout.clear();
        self.encodings.clear();
        self.locations.clear();
        self.offsets.clear();
        self.srclocs.clear();
    }

    /// Create a new empty, anonymous function with a Fast calling convention.
    pub fn new() -> Self {
        Self::with_name_signature(ExternalName::default(), Signature::new(CallConv::Fast))
    }

    /// Creates a jump table in the function, to be used by `br_table` instructions.
    pub fn create_jump_table(&mut self, data: JumpTableData) -> JumpTable {
        self.jump_tables.push(data)
    }

    /// Inserts an entry in a previously declared jump table.
    pub fn insert_jump_table_entry(&mut self, jt: JumpTable, index: usize, ebb: Ebb) {
        self.jump_tables[jt].set_entry(index, ebb);
    }

    /// Creates a stack slot in the function, to be used by `stack_load`, `stack_store` and
    /// `stack_addr` instructions.
    pub fn create_stack_slot(&mut self, data: StackSlotData) -> StackSlot {
        self.stack_slots.push(data)
    }

    /// Sets the stack limit for the function.
    ///
    /// Returns previous one if any.
    pub fn set_stack_limit(&mut self, stack_limit: Option<GlobalValue>) -> Option<GlobalValue> {
        let prev = self.stack_limit.take();
        self.stack_limit = stack_limit;
        prev
    }

    /// Adds a signature which can later be used to declare an external function import.
    pub fn import_signature(&mut self, signature: Signature) -> SigRef {
        self.dfg.signatures.push(signature)
    }

    /// Declare an external function import.
    pub fn import_function(&mut self, data: ExtFuncData) -> FuncRef {
        self.dfg.ext_funcs.push(data)
    }

    /// Declares a global value accessible to the function.
    pub fn create_global_value(&mut self, data: GlobalValueData) -> GlobalValue {
        self.global_values.push(data)
    }

    /// Declares a heap accessible to the function.
    pub fn create_heap(&mut self, data: HeapData) -> Heap {
        self.heaps.push(data)
    }

    /// Return an object that can display this function with correct ISA-specific annotations.
    pub fn display<'a, I: Into<Option<&'a TargetIsa>>>(&'a self, isa: I) -> DisplayFunction<'a> {
        DisplayFunction(self, isa.into())
    }

    /// Find a presumed unique special-purpose function parameter value.
    ///
    /// Returns the value of the last `purpose` parameter, or `None` if no such parameter exists.
    pub fn special_param(&self, purpose: ir::ArgumentPurpose) -> Option<ir::Value> {
        let entry = self.layout.entry_block().expect("Function is empty");
        self.signature
            .special_param_index(purpose)
            .map(|i| self.dfg.ebb_params(entry)[i])
    }

    /// Get an iterator over the instructions in `ebb`, including offsets and encoded instruction
    /// sizes.
    ///
    /// The iterator returns `(offset, inst, size)` tuples, where `offset` if the offset in bytes
    /// from the beginning of the function to the instruction, and `size` is the size of the
    /// instruction in bytes, or 0 for unencoded instructions.
    ///
    /// This function can only be used after the code layout has been computed by the
    /// `binemit::relax_branches()` function.
    pub fn inst_offsets<'a>(&'a self, ebb: Ebb, encinfo: &EncInfo) -> InstOffsetIter<'a> {
        assert!(
            !self.offsets.is_empty(),
            "Code layout must be computed first"
        );
        InstOffsetIter {
            encinfo: encinfo.clone(),
            encodings: &self.encodings,
            offset: self.offsets[ebb],
            iter: self.layout.ebb_insts(ebb),
        }
    }

    /// Wrapper around `encode` which assigns `inst` the resulting encoding.
    pub fn update_encoding(&mut self, inst: ir::Inst, isa: &TargetIsa) -> Result<(), Legalize> {
        self.encode(inst, isa).map(|e| self.encodings[inst] = e)
    }

    /// Wrapper around `TargetIsa::encode` for encoding an existing instruction
    /// in the `Function`.
    pub fn encode(&self, inst: ir::Inst, isa: &TargetIsa) -> Result<Encoding, Legalize> {
        isa.encode(&self, &self.dfg[inst], self.dfg.ctrl_typevar(inst))
    }
}

/// Wrapper type capable of displaying a `Function` with correct ISA annotations.
pub struct DisplayFunction<'a>(&'a Function, Option<&'a TargetIsa>);

impl<'a> fmt::Display for DisplayFunction<'a> {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write_function(fmt, self.0, self.1)
    }
}

impl fmt::Display for Function {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write_function(fmt, self, None)
    }
}

impl fmt::Debug for Function {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write_function(fmt, self, None)
    }
}

/// Iterator returning instruction offsets and sizes: `(offset, inst, size)`.
pub struct InstOffsetIter<'a> {
    encinfo: EncInfo,
    encodings: &'a InstEncodings,
    offset: CodeOffset,
    iter: ir::layout::Insts<'a>,
}

impl<'a> Iterator for InstOffsetIter<'a> {
    type Item = (CodeOffset, ir::Inst, CodeOffset);

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|inst| {
            let size = self.encinfo.bytes(self.encodings[inst]);
            let offset = self.offset;
            self.offset += size;
            (offset, inst, size)
        })
    }
}