cranelift_codegen/machinst/
buffer.rs

1//! In-memory representation of compiled machine code, with labels and fixups to
2//! refer to those labels. Handles constant-pool island insertion and also
3//! veneer insertion for out-of-range jumps.
4//!
5//! This code exists to solve three problems:
6//!
7//! - Branch targets for forward branches are not known until later, when we
8//!   emit code in a single pass through the instruction structs.
9//!
10//! - On many architectures, address references or offsets have limited range.
11//!   For example, on AArch64, conditional branches can only target code +/- 1MB
12//!   from the branch itself.
13//!
14//! - The lowering of control flow from the CFG-with-edges produced by
15//!   [BlockLoweringOrder](super::BlockLoweringOrder), combined with many empty
16//!   edge blocks when the register allocator does not need to insert any
17//!   spills/reloads/moves in edge blocks, results in many suboptimal branch
18//!   patterns. The lowering also pays no attention to block order, and so
19//!   two-target conditional forms (cond-br followed by uncond-br) can often by
20//!   avoided because one of the targets is the fallthrough. There are several
21//!   cases here where we can simplify to use fewer branches.
22//!
23//! This "buffer" implements a single-pass code emission strategy (with a later
24//! "fixup" pass, but only through recorded fixups, not all instructions). The
25//! basic idea is:
26//!
27//! - Emit branches as they are, including two-target (cond/uncond) compound
28//!   forms, but with zero offsets and optimistically assuming the target will be
29//!   in range. Record the "fixup" for later. Targets are denoted instead by
30//!   symbolic "labels" that are then bound to certain offsets in the buffer as
31//!   we emit code. (Nominally, there is a label at the start of every basic
32//!   block.)
33//!
34//! - As we do this, track the offset in the buffer at which the first label
35//!   reference "goes out of range". We call this the "deadline". If we reach the
36//!   deadline and we still have not bound the label to which an unresolved branch
37//!   refers, we have a problem!
38//!
39//! - To solve this problem, we emit "islands" full of "veneers". An island is
40//!   simply a chunk of code inserted in the middle of the code actually produced
41//!   by the emitter (e.g., vcode iterating over instruction structs). The emitter
42//!   has some awareness of this: it either asks for an island between blocks, so
43//!   it is not accidentally executed, or else it emits a branch around the island
44//!   when all other options fail (see `Inst::EmitIsland` meta-instruction).
45//!
46//! - A "veneer" is an instruction (or sequence of instructions) in an "island"
47//!   that implements a longer-range reference to a label. The idea is that, for
48//!   example, a branch with a limited range can branch to a "veneer" instead,
49//!   which is simply a branch in a form that can use a longer-range reference. On
50//!   AArch64, for example, conditionals have a +/- 1 MB range, but a conditional
51//!   can branch to an unconditional branch which has a +/- 128 MB range. Hence, a
52//!   conditional branch's label reference can be fixed up with a "veneer" to
53//!   achieve a longer range.
54//!
55//! - To implement all of this, we require the backend to provide a `LabelUse`
56//!   type that implements a trait. This is nominally an enum that records one of
57//!   several kinds of references to an offset in code -- basically, a relocation
58//!   type -- and will usually correspond to different instruction formats. The
59//!   `LabelUse` implementation specifies the maximum range, how to patch in the
60//!   actual label location when known, and how to generate a veneer to extend the
61//!   range.
62//!
63//! That satisfies label references, but we still may have suboptimal branch
64//! patterns. To clean up the branches, we do a simple "peephole"-style
65//! optimization on the fly. To do so, the emitter (e.g., `Inst::emit()`)
66//! informs the buffer of branches in the code and, in the case of conditionals,
67//! the code that would have been emitted to invert this branch's condition. We
68//! track the "latest branches": these are branches that are contiguous up to
69//! the current offset. (If any code is emitted after a branch, that branch or
70//! run of contiguous branches is no longer "latest".) The latest branches are
71//! those that we can edit by simply truncating the buffer and doing something
72//! else instead.
73//!
74//! To optimize branches, we implement several simple rules, and try to apply
75//! them to the "latest branches" when possible:
76//!
77//! - A branch with a label target, when that label is bound to the ending
78//!   offset of the branch (the fallthrough location), can be removed altogether,
79//!   because the branch would have no effect).
80//!
81//! - An unconditional branch that starts at a label location, and branches to
82//!   another label, results in a "label alias": all references to the label bound
83//!   *to* this branch instruction are instead resolved to the *target* of the
84//!   branch instruction. This effectively removes empty blocks that just
85//!   unconditionally branch to the next block. We call this "branch threading".
86//!
87//! - A conditional followed by an unconditional, when the conditional branches
88//!   to the unconditional's fallthrough, results in (i) the truncation of the
89//!   unconditional, (ii) the inversion of the condition's condition, and (iii)
90//!   replacement of the conditional's target (using the original target of the
91//!   unconditional). This is a fancy way of saying "we can flip a two-target
92//!   conditional branch's taken/not-taken targets if it works better with our
93//!   fallthrough". To make this work, the emitter actually gives the buffer
94//!   *both* forms of every conditional branch: the true form is emitted into the
95//!   buffer, and the "inverted" machine-code bytes are provided as part of the
96//!   branch-fixup metadata.
97//!
98//! - An unconditional B preceded by another unconditional P, when B's label(s) have
99//!   been redirected to target(B), can be removed entirely. This is an extension
100//!   of the branch-threading optimization, and is valid because if we know there
101//!   will be no fallthrough into this branch instruction (the prior instruction
102//!   is an unconditional jump), and if we know we have successfully redirected
103//!   all labels, then this branch instruction is unreachable. Note that this
104//!   works because the redirection happens before the label is ever resolved
105//!   (fixups happen at island emission time, at which point latest-branches are
106//!   cleared, or at the end of emission), so we are sure to catch and redirect
107//!   all possible paths to this instruction.
108//!
109//! # Branch-optimization Correctness
110//!
111//! The branch-optimization mechanism depends on a few data structures with
112//! invariants, which are always held outside the scope of top-level public
113//! methods:
114//!
115//! - The latest-branches list. Each entry describes a span of the buffer
116//!   (start/end offsets), the label target, the corresponding fixup-list entry
117//!   index, and the bytes (must be the same length) for the inverted form, if
118//!   conditional. The list of labels that are bound to the start-offset of this
119//!   branch is *complete* (if any label has a resolved offset equal to `start`
120//!   and is not an alias, it must appear in this list) and *precise* (no label
121//!   in this list can be bound to another offset). No label in this list should
122//!   be an alias.  No two branch ranges can overlap, and branches are in
123//!   ascending-offset order.
124//!
125//! - The labels-at-tail list. This contains all MachLabels that have been bound
126//!   to (whose resolved offsets are equal to) the tail offset of the buffer.
127//!   No label in this list should be an alias.
128//!
129//! - The label_offsets array, containing the bound offset of a label or
130//!   UNKNOWN. No label can be bound at an offset greater than the current
131//!   buffer tail.
132//!
133//! - The label_aliases array, containing another label to which a label is
134//!   bound or UNKNOWN. A label's resolved offset is the resolved offset
135//!   of the label it is aliased to, if this is set.
136//!
137//! We argue below, at each method, how the invariants in these data structures
138//! are maintained (grep for "Post-invariant").
139//!
140//! Given these invariants, we argue why each optimization preserves execution
141//! semantics below (grep for "Preserves execution semantics").
142//!
143//! # Avoiding Quadratic Behavior
144//!
145//! There are two cases where we've had to take some care to avoid
146//! quadratic worst-case behavior:
147//!
148//! - The "labels at this branch" list can grow unboundedly if the
149//!   code generator binds many labels at one location. If the count
150//!   gets too high (defined by the `LABEL_LIST_THRESHOLD` constant), we
151//!   simply abort an optimization early in a way that is always correct
152//!   but is conservative.
153//!
154//! - The fixup list can interact with island emission to create
155//!   "quadratic island behavior". In a little more detail, one can hit
156//!   this behavior by having some pending fixups (forward label
157//!   references) with long-range label-use kinds, and some others
158//!   with shorter-range references that nonetheless still are pending
159//!   long enough to trigger island generation. In such a case, we
160//!   process the fixup list, generate veneers to extend some forward
161//!   references' ranges, but leave the other (longer-range) ones
162//!   alone. The way this was implemented put them back on a list and
163//!   resulted in quadratic behavior.
164//!
165//!   To avoid this fixups are split into two lists: one "pending" list and one
166//!   final list. The pending list is kept around for handling fixups related to
167//!   branches so it can be edited/truncated. When an island is reached, which
168//!   starts processing fixups, all pending fixups are flushed into the final
169//!   list. The final list is a `BinaryHeap` which enables fixup processing to
170//!   only process those which are required during island emission, deferring
171//!   all longer-range fixups to later.
172
173use crate::binemit::{Addend, CodeOffset, Reloc};
174use crate::ir::function::FunctionParameters;
175use crate::ir::{DebugTag, ExceptionTag, ExternalName, RelSourceLoc, SourceLoc, TrapCode};
176use crate::isa::unwind::UnwindInst;
177use crate::machinst::{
178    BlockIndex, MachInstLabelUse, TextSectionBuilder, VCodeConstant, VCodeConstants, VCodeInst,
179};
180use crate::trace;
181use crate::{MachInstEmitState, ir};
182use crate::{VCodeConstantData, timing};
183use core::ops::Range;
184use cranelift_control::ControlPlane;
185use cranelift_entity::{PrimaryMap, SecondaryMap, entity_impl};
186use smallvec::SmallVec;
187use std::cmp::Ordering;
188use std::collections::BinaryHeap;
189use std::mem;
190use std::string::String;
191use std::vec::Vec;
192
193#[cfg(feature = "enable-serde")]
194use serde::{Deserialize, Serialize};
195
196#[cfg(feature = "enable-serde")]
197pub trait CompilePhase {
198    type MachSrcLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
199    type SourceLocType: for<'a> Deserialize<'a> + Serialize + core::fmt::Debug + PartialEq + Clone;
200}
201
202#[cfg(not(feature = "enable-serde"))]
203pub trait CompilePhase {
204    type MachSrcLocType: core::fmt::Debug + PartialEq + Clone;
205    type SourceLocType: core::fmt::Debug + PartialEq + Clone;
206}
207
208/// Status of a compiled artifact that needs patching before being used.
209#[derive(Clone, Debug, PartialEq)]
210#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
211pub struct Stencil;
212
213/// Status of a compiled artifact ready to use.
214#[derive(Clone, Debug, PartialEq)]
215pub struct Final;
216
217impl CompilePhase for Stencil {
218    type MachSrcLocType = MachSrcLoc<Stencil>;
219    type SourceLocType = RelSourceLoc;
220}
221
222impl CompilePhase for Final {
223    type MachSrcLocType = MachSrcLoc<Final>;
224    type SourceLocType = SourceLoc;
225}
226
227#[derive(Clone, Copy, Debug, PartialEq, Eq)]
228enum ForceVeneers {
229    Yes,
230    No,
231}
232
233/// A buffer of output to be produced, fixed up, and then emitted to a CodeSink
234/// in bulk.
235///
236/// This struct uses `SmallVec`s to support small-ish function bodies without
237/// any heap allocation. As such, it will be several kilobytes large. This is
238/// likely fine as long as it is stack-allocated for function emission then
239/// thrown away; but beware if many buffer objects are retained persistently.
240pub struct MachBuffer<I: VCodeInst> {
241    /// The buffer contents, as raw bytes.
242    data: SmallVec<[u8; 1024]>,
243    /// The required alignment of this buffer.
244    min_alignment: u32,
245    /// Any relocations referring to this code. Note that only *external*
246    /// relocations are tracked here; references to labels within the buffer are
247    /// resolved before emission.
248    relocs: SmallVec<[MachReloc; 16]>,
249    /// Any trap records referring to this code.
250    traps: SmallVec<[MachTrap; 16]>,
251    /// Any call site records referring to this code.
252    call_sites: SmallVec<[MachCallSite; 16]>,
253    /// Any patchable call site locations.
254    patchable_call_sites: SmallVec<[MachPatchableCallSite; 16]>,
255    /// Any exception-handler records referred to at call sites.
256    exception_handlers: SmallVec<[MachExceptionHandler; 16]>,
257    /// Any source location mappings referring to this code.
258    srclocs: SmallVec<[MachSrcLoc<Stencil>; 64]>,
259    /// Any debug tags referring to this code.
260    debug_tags: Vec<MachDebugTags>,
261    /// Pool of debug tags referenced by `MachDebugTags` entries.
262    debug_tag_pool: Vec<DebugTag>,
263    /// Any user stack maps for this code.
264    ///
265    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
266    /// by code offset, and each stack map covers `span` bytes on the stack.
267    user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
268    /// Any unwind info at a given location.
269    unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
270    /// The current source location in progress (after `start_srcloc()` and
271    /// before `end_srcloc()`).  This is a (start_offset, src_loc) tuple.
272    cur_srcloc: Option<(CodeOffset, RelSourceLoc)>,
273    /// Known label offsets; `UNKNOWN_LABEL_OFFSET` if unknown.
274    label_offsets: SmallVec<[CodeOffset; 16]>,
275    /// Label aliases: when one label points to an unconditional jump, and that
276    /// jump points to another label, we can redirect references to the first
277    /// label immediately to the second.
278    ///
279    /// Invariant: we don't have label-alias cycles. We ensure this by,
280    /// before setting label A to alias label B, resolving B's alias
281    /// target (iteratively until a non-aliased label); if B is already
282    /// aliased to A, then we cannot alias A back to B.
283    label_aliases: SmallVec<[MachLabel; 16]>,
284    /// Constants that must be emitted at some point.
285    pending_constants: SmallVec<[VCodeConstant; 16]>,
286    /// Byte size of all constants in `pending_constants`.
287    pending_constants_size: CodeOffset,
288    /// Traps that must be emitted at some point.
289    pending_traps: SmallVec<[MachLabelTrap; 16]>,
290    /// Fixups that haven't yet been flushed into `fixup_records` below and may
291    /// be related to branches that are chomped. These all get added to
292    /// `fixup_records` during island emission.
293    pending_fixup_records: SmallVec<[MachLabelFixup<I>; 16]>,
294    /// The nearest upcoming deadline for entries in `pending_fixup_records`.
295    pending_fixup_deadline: CodeOffset,
296    /// Fixups that must be performed after all code is emitted.
297    fixup_records: BinaryHeap<MachLabelFixup<I>>,
298    /// Latest branches, to facilitate in-place editing for better fallthrough
299    /// behavior and empty-block removal.
300    latest_branches: SmallVec<[MachBranch; 4]>,
301    /// All labels at the current offset (emission tail). This is lazily
302    /// cleared: it is actually accurate as long as the current offset is
303    /// `labels_at_tail_off`, but if `cur_offset()` has grown larger, it should
304    /// be considered as empty.
305    ///
306    /// For correctness, this *must* be complete (i.e., the vector must contain
307    /// all labels whose offsets are resolved to the current tail), because we
308    /// rely on it to update labels when we truncate branches.
309    labels_at_tail: SmallVec<[MachLabel; 4]>,
310    /// The last offset at which `labels_at_tail` is valid. It is conceptually
311    /// always describing the tail of the buffer, but we do not clear
312    /// `labels_at_tail` eagerly when the tail grows, rather we lazily clear it
313    /// when the offset has grown past this (`labels_at_tail_off`) point.
314    /// Always <= `cur_offset()`.
315    labels_at_tail_off: CodeOffset,
316    /// Metadata about all constants that this function has access to.
317    ///
318    /// This records the size/alignment of all constants (not the actual data)
319    /// along with the last available label generated for the constant. This map
320    /// is consulted when constants are referred to and the label assigned to a
321    /// constant may change over time as well.
322    constants: PrimaryMap<VCodeConstant, MachBufferConstant>,
323    /// All recorded usages of constants as pairs of the constant and where the
324    /// constant needs to be placed within `self.data`. Note that the same
325    /// constant may appear in this array multiple times if it was emitted
326    /// multiple times.
327    used_constants: SmallVec<[(VCodeConstant, CodeOffset); 4]>,
328    /// Indicates when a patchable region is currently open, to guard that it's
329    /// not possible to nest patchable regions.
330    open_patchable: bool,
331    /// Stack frame layout metadata. If provided for a MachBuffer
332    /// containing a function body, this allows interpretation of
333    /// runtime state given a view of an active stack frame.
334    frame_layout: Option<MachBufferFrameLayout>,
335}
336
337impl MachBufferFinalized<Stencil> {
338    /// Get a finalized machine buffer by applying the function's base source location.
339    pub fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachBufferFinalized<Final> {
340        MachBufferFinalized {
341            data: self.data,
342            relocs: self.relocs,
343            traps: self.traps,
344            call_sites: self.call_sites,
345            patchable_call_sites: self.patchable_call_sites,
346            exception_handlers: self.exception_handlers,
347            srclocs: self
348                .srclocs
349                .into_iter()
350                .map(|srcloc| srcloc.apply_base_srcloc(base_srcloc))
351                .collect(),
352            debug_tags: self.debug_tags,
353            debug_tag_pool: self.debug_tag_pool,
354            user_stack_maps: self.user_stack_maps,
355            unwind_info: self.unwind_info,
356            alignment: self.alignment,
357            frame_layout: self.frame_layout,
358            nop: self.nop,
359        }
360    }
361}
362
363/// A `MachBuffer` once emission is completed: holds generated code and records,
364/// without fixups. This allows the type to be independent of the backend.
365#[derive(PartialEq, Debug, Clone)]
366#[cfg_attr(
367    feature = "enable-serde",
368    derive(serde_derive::Serialize, serde_derive::Deserialize)
369)]
370pub struct MachBufferFinalized<T: CompilePhase> {
371    /// The buffer contents, as raw bytes.
372    pub(crate) data: SmallVec<[u8; 1024]>,
373    /// Any relocations referring to this code. Note that only *external*
374    /// relocations are tracked here; references to labels within the buffer are
375    /// resolved before emission.
376    pub(crate) relocs: SmallVec<[FinalizedMachReloc; 16]>,
377    /// Any trap records referring to this code.
378    pub(crate) traps: SmallVec<[MachTrap; 16]>,
379    /// Any call site records referring to this code.
380    pub(crate) call_sites: SmallVec<[MachCallSite; 16]>,
381    /// Any patchable call site locations refering to this code.
382    pub(crate) patchable_call_sites: SmallVec<[MachPatchableCallSite; 16]>,
383    /// Any exception-handler records referred to at call sites.
384    pub(crate) exception_handlers: SmallVec<[FinalizedMachExceptionHandler; 16]>,
385    /// Any source location mappings referring to this code.
386    pub(crate) srclocs: SmallVec<[T::MachSrcLocType; 64]>,
387    /// Any debug tags referring to this code.
388    pub(crate) debug_tags: Vec<MachDebugTags>,
389    /// Pool of debug tags referenced by `MachDebugTags` entries.
390    pub(crate) debug_tag_pool: Vec<DebugTag>,
391    /// Any user stack maps for this code.
392    ///
393    /// Each entry is an `(offset, span, stack_map)` triple. Entries are sorted
394    /// by code offset, and each stack map covers `span` bytes on the stack.
395    pub(crate) user_stack_maps: SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]>,
396    /// Stack frame layout metadata. If provided for a MachBuffer
397    /// containing a function body, this allows interpretation of
398    /// runtime state given a view of an active stack frame.
399    pub(crate) frame_layout: Option<MachBufferFrameLayout>,
400    /// Any unwind info at a given location.
401    pub unwind_info: SmallVec<[(CodeOffset, UnwindInst); 8]>,
402    /// The required alignment of this buffer.
403    pub alignment: u32,
404    /// The means by which to NOP out patchable call sites.
405    ///
406    /// This allows a consumer of a `MachBufferFinalized` to disable
407    /// patchable call sites (which are enabled by default) without
408    /// specific knowledge of the target ISA.
409    pub nop: SmallVec<[u8; 8]>,
410}
411
412const UNKNOWN_LABEL_OFFSET: CodeOffset = 0xffff_ffff;
413const UNKNOWN_LABEL: MachLabel = MachLabel(0xffff_ffff);
414
415/// Threshold on max length of `labels_at_this_branch` list to avoid
416/// unbounded quadratic behavior (see comment below at use-site).
417const LABEL_LIST_THRESHOLD: usize = 100;
418
419/// A label refers to some offset in a `MachBuffer`. It may not be resolved at
420/// the point at which it is used by emitted code; the buffer records "fixups"
421/// for references to the label, and will come back and patch the code
422/// appropriately when the label's location is eventually known.
423#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
424pub struct MachLabel(u32);
425entity_impl!(MachLabel);
426
427impl MachLabel {
428    /// Get a label for a block. (The first N MachLabels are always reserved for
429    /// the N blocks in the vcode.)
430    pub fn from_block(bindex: BlockIndex) -> MachLabel {
431        MachLabel(bindex.index() as u32)
432    }
433
434    /// Creates a string representing this label, for convenience.
435    pub fn to_string(&self) -> String {
436        format!("label{}", self.0)
437    }
438}
439
440impl Default for MachLabel {
441    fn default() -> Self {
442        UNKNOWN_LABEL
443    }
444}
445
446/// Represents the beginning of an editable region in the [`MachBuffer`], while code emission is
447/// still occurring. An [`OpenPatchRegion`] is closed by [`MachBuffer::end_patchable`], consuming
448/// the [`OpenPatchRegion`] token in the process.
449pub struct OpenPatchRegion(usize);
450
451/// A region in the [`MachBuffer`] code buffer that can be edited prior to finalization. An example
452/// of where you might want to use this is for patching instructions that mention constants that
453/// won't be known until later: [`MachBuffer::start_patchable`] can be used to begin the patchable
454/// region, instructions can be emitted with placeholder constants, and the [`PatchRegion`] token
455/// can be produced by [`MachBuffer::end_patchable`]. Once the values of those constants are known,
456/// the [`PatchRegion::patch`] function can be used to get a mutable buffer to the instruction
457/// bytes, and the constants uses can be updated directly.
458pub struct PatchRegion {
459    range: Range<usize>,
460}
461
462impl PatchRegion {
463    /// Consume the patch region to yield a mutable slice of the [`MachBuffer`] data buffer.
464    pub fn patch<I: VCodeInst>(self, buffer: &mut MachBuffer<I>) -> &mut [u8] {
465        &mut buffer.data[self.range]
466    }
467}
468
469impl<I: VCodeInst> MachBuffer<I> {
470    /// Create a new section, known to start at `start_offset` and with a size limited to
471    /// `length_limit`.
472    pub fn new() -> MachBuffer<I> {
473        MachBuffer {
474            data: SmallVec::new(),
475            min_alignment: I::function_alignment().minimum,
476            relocs: SmallVec::new(),
477            traps: SmallVec::new(),
478            call_sites: SmallVec::new(),
479            patchable_call_sites: SmallVec::new(),
480            exception_handlers: SmallVec::new(),
481            srclocs: SmallVec::new(),
482            debug_tags: vec![],
483            debug_tag_pool: vec![],
484            user_stack_maps: SmallVec::new(),
485            unwind_info: SmallVec::new(),
486            cur_srcloc: None,
487            label_offsets: SmallVec::new(),
488            label_aliases: SmallVec::new(),
489            pending_constants: SmallVec::new(),
490            pending_constants_size: 0,
491            pending_traps: SmallVec::new(),
492            pending_fixup_records: SmallVec::new(),
493            pending_fixup_deadline: u32::MAX,
494            fixup_records: Default::default(),
495            latest_branches: SmallVec::new(),
496            labels_at_tail: SmallVec::new(),
497            labels_at_tail_off: 0,
498            constants: Default::default(),
499            used_constants: Default::default(),
500            open_patchable: false,
501            frame_layout: None,
502        }
503    }
504
505    /// Current offset from start of buffer.
506    pub fn cur_offset(&self) -> CodeOffset {
507        self.data.len() as CodeOffset
508    }
509
510    /// Add a byte.
511    pub fn put1(&mut self, value: u8) {
512        self.data.push(value);
513
514        // Post-invariant: conceptual-labels_at_tail contains a complete and
515        // precise list of labels bound at `cur_offset()`. We have advanced
516        // `cur_offset()`, hence if it had been equal to `labels_at_tail_off`
517        // before, it is not anymore (and it cannot become equal, because
518        // `labels_at_tail_off` is always <= `cur_offset()`). Thus the list is
519        // conceptually empty (even though it is only lazily cleared). No labels
520        // can be bound at this new offset (by invariant on `label_offsets`).
521        // Hence the invariant holds.
522    }
523
524    /// Add 2 bytes.
525    pub fn put2(&mut self, value: u16) {
526        let bytes = value.to_le_bytes();
527        self.data.extend_from_slice(&bytes[..]);
528
529        // Post-invariant: as for `put1()`.
530    }
531
532    /// Add 4 bytes.
533    pub fn put4(&mut self, value: u32) {
534        let bytes = value.to_le_bytes();
535        self.data.extend_from_slice(&bytes[..]);
536
537        // Post-invariant: as for `put1()`.
538    }
539
540    /// Add 8 bytes.
541    pub fn put8(&mut self, value: u64) {
542        let bytes = value.to_le_bytes();
543        self.data.extend_from_slice(&bytes[..]);
544
545        // Post-invariant: as for `put1()`.
546    }
547
548    /// Add a slice of bytes.
549    pub fn put_data(&mut self, data: &[u8]) {
550        self.data.extend_from_slice(data);
551
552        // Post-invariant: as for `put1()`.
553    }
554
555    /// Reserve appended space and return a mutable slice referring to it.
556    pub fn get_appended_space(&mut self, len: usize) -> &mut [u8] {
557        let off = self.data.len();
558        let new_len = self.data.len() + len;
559        self.data.resize(new_len, 0);
560        &mut self.data[off..]
561
562        // Post-invariant: as for `put1()`.
563    }
564
565    /// Align up to the given alignment.
566    pub fn align_to(&mut self, align_to: CodeOffset) {
567        trace!("MachBuffer: align to {}", align_to);
568        assert!(
569            align_to.is_power_of_two(),
570            "{align_to} is not a power of two"
571        );
572        while self.cur_offset() & (align_to - 1) != 0 {
573            self.put1(0);
574        }
575
576        // Post-invariant: as for `put1()`.
577    }
578
579    /// Begin a region of patchable code. There is one requirement for the
580    /// code that is emitted: It must not introduce any instructions that
581    /// could be chomped (branches are an example of this). In other words,
582    /// you must not call [`MachBuffer::add_cond_branch`] or
583    /// [`MachBuffer::add_uncond_branch`] between calls to this method and
584    /// [`MachBuffer::end_patchable`].
585    pub fn start_patchable(&mut self) -> OpenPatchRegion {
586        assert!(!self.open_patchable, "Patchable regions may not be nested");
587        self.open_patchable = true;
588        OpenPatchRegion(usize::try_from(self.cur_offset()).unwrap())
589    }
590
591    /// End a region of patchable code, yielding a [`PatchRegion`] value that
592    /// can be consumed later to produce a one-off mutable slice to the
593    /// associated region of the data buffer.
594    pub fn end_patchable(&mut self, open: OpenPatchRegion) -> PatchRegion {
595        // No need to assert the state of `open_patchable` here, as we take
596        // ownership of the only `OpenPatchable` value.
597        self.open_patchable = false;
598        let end = usize::try_from(self.cur_offset()).unwrap();
599        PatchRegion { range: open.0..end }
600    }
601
602    /// Allocate a `Label` to refer to some offset. May not be bound to a fixed
603    /// offset yet.
604    pub fn get_label(&mut self) -> MachLabel {
605        let l = self.label_offsets.len() as u32;
606        self.label_offsets.push(UNKNOWN_LABEL_OFFSET);
607        self.label_aliases.push(UNKNOWN_LABEL);
608        trace!("MachBuffer: new label -> {:?}", MachLabel(l));
609        MachLabel(l)
610
611        // Post-invariant: the only mutation is to add a new label; it has no
612        // bound offset yet, so it trivially satisfies all invariants.
613    }
614
615    /// Reserve the first N MachLabels for blocks.
616    pub fn reserve_labels_for_blocks(&mut self, blocks: usize) {
617        trace!("MachBuffer: first {} labels are for blocks", blocks);
618        debug_assert!(self.label_offsets.is_empty());
619        self.label_offsets.resize(blocks, UNKNOWN_LABEL_OFFSET);
620        self.label_aliases.resize(blocks, UNKNOWN_LABEL);
621
622        // Post-invariant: as for `get_label()`.
623    }
624
625    /// Registers metadata in this `MachBuffer` about the `constants` provided.
626    ///
627    /// This will record the size/alignment of all constants which will prepare
628    /// them for emission later on.
629    pub fn register_constants(&mut self, constants: &VCodeConstants) {
630        for (c, val) in constants.iter() {
631            self.register_constant(&c, val);
632        }
633    }
634
635    /// Similar to [`MachBuffer::register_constants`] but registers a
636    /// single constant metadata. This function is useful in
637    /// situations where not all constants are known at the time of
638    /// emission.
639    pub fn register_constant(&mut self, constant: &VCodeConstant, data: &VCodeConstantData) {
640        let c2 = self.constants.push(MachBufferConstant {
641            upcoming_label: None,
642            align: data.alignment(),
643            size: data.as_slice().len(),
644        });
645        assert_eq!(*constant, c2);
646    }
647
648    /// Completes constant emission by iterating over `self.used_constants` and
649    /// filling in the "holes" with the constant values provided by `constants`.
650    ///
651    /// Returns the alignment required for this entire buffer. Alignment starts
652    /// at the ISA's minimum function alignment and can be increased due to
653    /// constant requirements.
654    fn finish_constants(&mut self, constants: &VCodeConstants) -> u32 {
655        let mut alignment = self.min_alignment;
656        for (constant, offset) in mem::take(&mut self.used_constants) {
657            let constant = constants.get(constant);
658            let data = constant.as_slice();
659            self.data[offset as usize..][..data.len()].copy_from_slice(data);
660            alignment = constant.alignment().max(alignment);
661        }
662        alignment
663    }
664
665    /// Returns a label that can be used to refer to the `constant` provided.
666    ///
667    /// This will automatically defer a new constant to be emitted for
668    /// `constant` if it has not been previously emitted. Note that this
669    /// function may return a different label for the same constant at
670    /// different points in time. The label is valid to use only from the
671    /// current location; the MachBuffer takes care to emit the same constant
672    /// multiple times if needed so the constant is always in range.
673    pub fn get_label_for_constant(&mut self, constant: VCodeConstant) -> MachLabel {
674        let MachBufferConstant {
675            align,
676            size,
677            upcoming_label,
678        } = self.constants[constant];
679        if let Some(label) = upcoming_label {
680            return label;
681        }
682
683        let label = self.get_label();
684        trace!(
685            "defer constant: eventually emit {size} bytes aligned \
686             to {align} at label {label:?}",
687        );
688        self.pending_constants.push(constant);
689        self.pending_constants_size += size as u32;
690        self.constants[constant].upcoming_label = Some(label);
691        label
692    }
693
694    /// Bind a label to the current offset. A label can only be bound once.
695    pub fn bind_label(&mut self, label: MachLabel, ctrl_plane: &mut ControlPlane) {
696        trace!(
697            "MachBuffer: bind label {:?} at offset {}",
698            label,
699            self.cur_offset()
700        );
701        debug_assert_eq!(self.label_offsets[label.0 as usize], UNKNOWN_LABEL_OFFSET);
702        debug_assert_eq!(self.label_aliases[label.0 as usize], UNKNOWN_LABEL);
703        let offset = self.cur_offset();
704        self.label_offsets[label.0 as usize] = offset;
705        self.lazily_clear_labels_at_tail();
706        self.labels_at_tail.push(label);
707
708        // Invariants hold: bound offset of label is <= cur_offset (in fact it
709        // is equal). If the `labels_at_tail` list was complete and precise
710        // before, it is still, because we have bound this label to the current
711        // offset and added it to the list (which contains all labels at the
712        // current offset).
713
714        self.optimize_branches(ctrl_plane);
715
716        // Post-invariant: by `optimize_branches()` (see argument there).
717    }
718
719    /// Lazily clear `labels_at_tail` if the tail offset has moved beyond the
720    /// offset that it applies to.
721    fn lazily_clear_labels_at_tail(&mut self) {
722        let offset = self.cur_offset();
723        if offset > self.labels_at_tail_off {
724            self.labels_at_tail_off = offset;
725            self.labels_at_tail.clear();
726        }
727
728        // Post-invariant: either labels_at_tail_off was at cur_offset, and
729        // state is untouched, or was less than cur_offset, in which case the
730        // labels_at_tail list was conceptually empty, and is now actually
731        // empty.
732    }
733
734    /// Resolve a label to an offset, if known. May return `UNKNOWN_LABEL_OFFSET`.
735    pub(crate) fn resolve_label_offset(&self, mut label: MachLabel) -> CodeOffset {
736        let mut iters = 0;
737        while self.label_aliases[label.0 as usize] != UNKNOWN_LABEL {
738            label = self.label_aliases[label.0 as usize];
739            // To protect against an infinite loop (despite our assurances to
740            // ourselves that the invariants make this impossible), assert out
741            // after 1M iterations. The number of basic blocks is limited
742            // in most contexts anyway so this should be impossible to hit with
743            // a legitimate input.
744            iters += 1;
745            assert!(iters < 1_000_000, "Unexpected cycle in label aliases");
746        }
747        self.label_offsets[label.0 as usize]
748
749        // Post-invariant: no mutations.
750    }
751
752    /// Emit a reference to the given label with the given reference type (i.e.,
753    /// branch-instruction format) at the current offset.  This is like a
754    /// relocation, but handled internally.
755    ///
756    /// This can be called before the branch is actually emitted; fixups will
757    /// not happen until an island is emitted or the buffer is finished.
758    pub fn use_label_at_offset(&mut self, offset: CodeOffset, label: MachLabel, kind: I::LabelUse) {
759        trace!(
760            "MachBuffer: use_label_at_offset: offset {} label {:?} kind {:?}",
761            offset, label, kind
762        );
763
764        // Add the fixup, and update the worst-case island size based on a
765        // veneer for this label use.
766        let fixup = MachLabelFixup {
767            label,
768            offset,
769            kind,
770        };
771        self.pending_fixup_deadline = self.pending_fixup_deadline.min(fixup.deadline());
772        self.pending_fixup_records.push(fixup);
773
774        // Post-invariant: no mutations to branches/labels data structures.
775    }
776
777    /// Inform the buffer of an unconditional branch at the given offset,
778    /// targeting the given label. May be used to optimize branches.
779    /// The last added label-use must correspond to this branch.
780    /// This must be called when the current offset is equal to `start`; i.e.,
781    /// before actually emitting the branch. This implies that for a branch that
782    /// uses a label and is eligible for optimizations by the MachBuffer, the
783    /// proper sequence is:
784    ///
785    /// - Call `use_label_at_offset()` to emit the fixup record.
786    /// - Call `add_uncond_branch()` to make note of the branch.
787    /// - Emit the bytes for the branch's machine code.
788    ///
789    /// Additional requirement: no labels may be bound between `start` and `end`
790    /// (exclusive on both ends).
791    pub fn add_uncond_branch(&mut self, start: CodeOffset, end: CodeOffset, target: MachLabel) {
792        debug_assert!(
793            !self.open_patchable,
794            "Branch instruction inserted within a patchable region"
795        );
796        assert!(self.cur_offset() == start);
797        debug_assert!(end > start);
798        assert!(!self.pending_fixup_records.is_empty());
799        let fixup = self.pending_fixup_records.len() - 1;
800        self.lazily_clear_labels_at_tail();
801        self.latest_branches.push(MachBranch {
802            start,
803            end,
804            target,
805            fixup,
806            inverted: None,
807            labels_at_this_branch: self.labels_at_tail.clone(),
808        });
809
810        // Post-invariant: we asserted branch start is current tail; the list of
811        // labels at branch is cloned from list of labels at current tail.
812    }
813
814    /// Inform the buffer of a conditional branch at the given offset,
815    /// targeting the given label. May be used to optimize branches.
816    /// The last added label-use must correspond to this branch.
817    ///
818    /// Additional requirement: no labels may be bound between `start` and `end`
819    /// (exclusive on both ends).
820    pub fn add_cond_branch(
821        &mut self,
822        start: CodeOffset,
823        end: CodeOffset,
824        target: MachLabel,
825        inverted: &[u8],
826    ) {
827        debug_assert!(
828            !self.open_patchable,
829            "Branch instruction inserted within a patchable region"
830        );
831        assert!(self.cur_offset() == start);
832        debug_assert!(end > start);
833        assert!(!self.pending_fixup_records.is_empty());
834        debug_assert!(
835            inverted.len() == (end - start) as usize,
836            "branch length = {}, but inverted length = {}",
837            end - start,
838            inverted.len()
839        );
840        let fixup = self.pending_fixup_records.len() - 1;
841        let inverted = Some(SmallVec::from(inverted));
842        self.lazily_clear_labels_at_tail();
843        self.latest_branches.push(MachBranch {
844            start,
845            end,
846            target,
847            fixup,
848            inverted,
849            labels_at_this_branch: self.labels_at_tail.clone(),
850        });
851
852        // Post-invariant: we asserted branch start is current tail; labels at
853        // branch list is cloned from list of labels at current tail.
854    }
855
856    fn truncate_last_branch(&mut self) {
857        debug_assert!(
858            !self.open_patchable,
859            "Branch instruction truncated within a patchable region"
860        );
861
862        self.lazily_clear_labels_at_tail();
863        // Invariants hold at this point.
864
865        let b = self.latest_branches.pop().unwrap();
866        assert!(b.end == self.cur_offset());
867
868        // State:
869        //    [PRE CODE]
870        //  Offset b.start, b.labels_at_this_branch:
871        //    [BRANCH CODE]
872        //  cur_off, self.labels_at_tail -->
873        //    (end of buffer)
874        self.data.truncate(b.start as usize);
875        self.pending_fixup_records.truncate(b.fixup);
876
877        // Trim srclocs and debug tags now past the end of the buffer.
878        while let Some(last_srcloc) = self.srclocs.last_mut() {
879            if last_srcloc.end <= b.start {
880                break;
881            }
882            if last_srcloc.start < b.start {
883                last_srcloc.end = b.start;
884                break;
885            }
886            self.srclocs.pop();
887        }
888        while let Some(last_debug_tag) = self.debug_tags.last() {
889            if last_debug_tag.offset <= b.start {
890                break;
891            }
892            self.debug_tags.pop();
893        }
894
895        // State:
896        //    [PRE CODE]
897        //  cur_off, Offset b.start, b.labels_at_this_branch:
898        //    (end of buffer)
899        //
900        //  self.labels_at_tail -->  (past end of buffer)
901        let cur_off = self.cur_offset();
902        self.labels_at_tail_off = cur_off;
903        // State:
904        //    [PRE CODE]
905        //  cur_off, Offset b.start, b.labels_at_this_branch,
906        //  self.labels_at_tail:
907        //    (end of buffer)
908        //
909        // resolve_label_offset(l) for l in labels_at_tail:
910        //    (past end of buffer)
911
912        trace!(
913            "truncate_last_branch: truncated {:?}; off now {}",
914            b, cur_off
915        );
916
917        // Fix up resolved label offsets for labels at tail.
918        for &l in &self.labels_at_tail {
919            self.label_offsets[l.0 as usize] = cur_off;
920        }
921        // Old labels_at_this_branch are now at cur_off.
922        self.labels_at_tail.extend(b.labels_at_this_branch);
923
924        // Post-invariant: this operation is defined to truncate the buffer,
925        // which moves cur_off backward, and to move labels at the end of the
926        // buffer back to the start-of-branch offset.
927        //
928        // latest_branches satisfies all invariants:
929        // - it has no branches past the end of the buffer (branches are in
930        //   order, we removed the last one, and we truncated the buffer to just
931        //   before the start of that branch)
932        // - no labels were moved to lower offsets than the (new) cur_off, so
933        //   the labels_at_this_branch list for any other branch need not change.
934        //
935        // labels_at_tail satisfies all invariants:
936        // - all labels that were at the tail after the truncated branch are
937        //   moved backward to just before the branch, which becomes the new tail;
938        //   thus every element in the list should remain (ensured by `.extend()`
939        //   above).
940        // - all labels that refer to the new tail, which is the start-offset of
941        //   the truncated branch, must be present. The `labels_at_this_branch`
942        //   list in the truncated branch's record is a complete and precise list
943        //   of exactly these labels; we append these to labels_at_tail.
944        // - labels_at_tail_off is at cur_off after truncation occurs, so the
945        //   list is valid (not to be lazily cleared).
946        //
947        // The stated operation was performed:
948        // - For each label at the end of the buffer prior to this method, it
949        //   now resolves to the new (truncated) end of the buffer: it must have
950        //   been in `labels_at_tail` (this list is precise and complete, and
951        //   the tail was at the end of the truncated branch on entry), and we
952        //   iterate over this list and set `label_offsets` to the new tail.
953        //   None of these labels could have been an alias (by invariant), so
954        //   `label_offsets` is authoritative for each.
955        // - No other labels will be past the end of the buffer, because of the
956        //   requirement that no labels be bound to the middle of branch ranges
957        //   (see comments to `add_{cond,uncond}_branch()`).
958        // - The buffer is truncated to just before the last branch, and the
959        //   fixup record referring to that last branch is removed.
960    }
961
962    /// Performs various optimizations on branches pointing at the current label.
963    pub fn optimize_branches(&mut self, ctrl_plane: &mut ControlPlane) {
964        if ctrl_plane.get_decision() {
965            return;
966        }
967
968        self.lazily_clear_labels_at_tail();
969        // Invariants valid at this point.
970
971        trace!(
972            "enter optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
973            self.latest_branches, self.labels_at_tail, self.pending_fixup_records
974        );
975
976        // We continue to munch on branches at the tail of the buffer until no
977        // more rules apply. Note that the loop only continues if a branch is
978        // actually truncated (or if labels are redirected away from a branch),
979        // so this always makes progress.
980        while let Some(b) = self.latest_branches.last() {
981            let cur_off = self.cur_offset();
982            trace!("optimize_branches: last branch {:?} at off {}", b, cur_off);
983            // If there has been any code emission since the end of the last branch or
984            // label definition, then there's nothing we can edit (because we
985            // don't move code once placed, only back up and overwrite), so
986            // clear the records and finish.
987            if b.end < cur_off {
988                break;
989            }
990
991            // If the "labels at this branch" list on this branch is
992            // longer than a threshold, don't do any simplification,
993            // and let the branch remain to separate those labels from
994            // the current tail. This avoids quadratic behavior (see
995            // #3468): otherwise, if a long string of "goto next;
996            // next:" patterns are emitted, all of the labels will
997            // coalesce into a long list of aliases for the current
998            // buffer tail. We must track all aliases of the current
999            // tail for correctness, but we are also allowed to skip
1000            // optimization (removal) of any branch, so we take the
1001            // escape hatch here and let it stand. In effect this
1002            // "spreads" the many thousands of labels in the
1003            // pathological case among an actual (harmless but
1004            // suboptimal) instruction once per N labels.
1005            if b.labels_at_this_branch.len() > LABEL_LIST_THRESHOLD {
1006                break;
1007            }
1008
1009            // Invariant: we are looking at a branch that ends at the tail of
1010            // the buffer.
1011
1012            // For any branch, conditional or unconditional:
1013            // - If the target is a label at the current offset, then remove
1014            //   the conditional branch, and reset all labels that targeted
1015            //   the current offset (end of branch) to the truncated
1016            //   end-of-code.
1017            //
1018            // Preserves execution semantics: a branch to its own fallthrough
1019            // address is equivalent to a no-op; in both cases, nextPC is the
1020            // fallthrough.
1021            if self.resolve_label_offset(b.target) == cur_off {
1022                trace!("branch with target == cur off; truncating");
1023                self.truncate_last_branch();
1024                continue;
1025            }
1026
1027            // If latest is an unconditional branch:
1028            //
1029            // - If the branch's target is not its own start address, then for
1030            //   each label at the start of branch, make the label an alias of the
1031            //   branch target, and remove the label from the "labels at this
1032            //   branch" list.
1033            //
1034            //   - Preserves execution semantics: an unconditional branch's
1035            //     only effect is to set PC to a new PC; this change simply
1036            //     collapses one step in the step-semantics.
1037            //
1038            //   - Post-invariant: the labels that were bound to the start of
1039            //     this branch become aliases, so they must not be present in any
1040            //     labels-at-this-branch list or the labels-at-tail list. The
1041            //     labels are removed form the latest-branch record's
1042            //     labels-at-this-branch list, and are never placed in the
1043            //     labels-at-tail list. Furthermore, it is correct that they are
1044            //     not in either list, because they are now aliases, and labels
1045            //     that are aliases remain aliases forever.
1046            //
1047            // - If there is a prior unconditional branch that ends just before
1048            //   this one begins, and this branch has no labels bound to its
1049            //   start, then we can truncate this branch, because it is entirely
1050            //   unreachable (we have redirected all labels that make it
1051            //   reachable otherwise). Do so and continue around the loop.
1052            //
1053            //   - Preserves execution semantics: the branch is unreachable,
1054            //     because execution can only flow into an instruction from the
1055            //     prior instruction's fallthrough or from a branch bound to that
1056            //     instruction's start offset. Unconditional branches have no
1057            //     fallthrough, so if the prior instruction is an unconditional
1058            //     branch, no fallthrough entry can happen. The
1059            //     labels-at-this-branch list is complete (by invariant), so if it
1060            //     is empty, then the instruction is entirely unreachable. Thus,
1061            //     it can be removed.
1062            //
1063            //   - Post-invariant: ensured by truncate_last_branch().
1064            //
1065            // - If there is a prior conditional branch whose target label
1066            //   resolves to the current offset (branches around the
1067            //   unconditional branch), then remove the unconditional branch,
1068            //   and make the target of the unconditional the target of the
1069            //   conditional instead.
1070            //
1071            //   - Preserves execution semantics: previously we had:
1072            //
1073            //         L1:
1074            //            cond_br L2
1075            //            br L3
1076            //         L2:
1077            //            (end of buffer)
1078            //
1079            //     by removing the last branch, we have:
1080            //
1081            //         L1:
1082            //            cond_br L2
1083            //         L2:
1084            //            (end of buffer)
1085            //
1086            //     we then fix up the records for the conditional branch to
1087            //     have:
1088            //
1089            //         L1:
1090            //           cond_br.inverted L3
1091            //         L2:
1092            //
1093            //     In the original code, control flow reaches L2 when the
1094            //     conditional branch's predicate is true, and L3 otherwise. In
1095            //     the optimized code, the same is true.
1096            //
1097            //   - Post-invariant: all edits to latest_branches and
1098            //     labels_at_tail are performed by `truncate_last_branch()`,
1099            //     which maintains the invariants at each step.
1100
1101            if b.is_uncond() {
1102                // Set any label equal to current branch's start as an alias of
1103                // the branch's target, if the target is not the branch itself
1104                // (i.e., an infinite loop).
1105                //
1106                // We cannot perform this aliasing if the target of this branch
1107                // ultimately aliases back here; if so, we need to keep this
1108                // branch, so break out of this loop entirely (and clear the
1109                // latest-branches list below).
1110                //
1111                // Note that this check is what prevents cycles from forming in
1112                // `self.label_aliases`. To see why, consider an arbitrary start
1113                // state:
1114                //
1115                // label_aliases[L1] = L2, label_aliases[L2] = L3, ..., up to
1116                // Ln, which is not aliased.
1117                //
1118                // We would create a cycle if we assigned label_aliases[Ln]
1119                // = L1.  Note that the below assignment is the only write
1120                // to label_aliases.
1121                //
1122                // By our other invariants, we have that Ln (`l` below)
1123                // resolves to the offset `b.start`, because it is in the
1124                // set `b.labels_at_this_branch`.
1125                //
1126                // If L1 were already aliased, through some arbitrarily deep
1127                // chain, to Ln, then it must also resolve to this offset
1128                // `b.start`.
1129                //
1130                // By checking the resolution of `L1` against this offset,
1131                // and aborting this branch-simplification if they are
1132                // equal, we prevent the below assignment from ever creating
1133                // a cycle.
1134                if self.resolve_label_offset(b.target) != b.start {
1135                    let redirected = b.labels_at_this_branch.len();
1136                    for &l in &b.labels_at_this_branch {
1137                        trace!(
1138                            " -> label at start of branch {:?} redirected to target {:?}",
1139                            l, b.target
1140                        );
1141                        self.label_aliases[l.0 as usize] = b.target;
1142                        // NOTE: we continue to ensure the invariant that labels
1143                        // pointing to tail of buffer are in `labels_at_tail`
1144                        // because we already ensured above that the last branch
1145                        // cannot have a target of `cur_off`; so we never have
1146                        // to put the label into `labels_at_tail` when moving it
1147                        // here.
1148                    }
1149                    // Maintain invariant: all branches have been redirected
1150                    // and are no longer pointing at the start of this branch.
1151                    let mut_b = self.latest_branches.last_mut().unwrap();
1152                    mut_b.labels_at_this_branch.clear();
1153
1154                    if redirected > 0 {
1155                        trace!(" -> after label redirects, restarting loop");
1156                        continue;
1157                    }
1158                } else {
1159                    break;
1160                }
1161
1162                let b = self.latest_branches.last().unwrap();
1163
1164                // Examine any immediately preceding branch.
1165                if self.latest_branches.len() > 1 {
1166                    let prev_b = &self.latest_branches[self.latest_branches.len() - 2];
1167                    trace!(" -> more than one branch; prev_b = {:?}", prev_b);
1168                    // This uncond is immediately after another uncond; we
1169                    // should have already redirected labels to this uncond away
1170                    // (but check to be sure); so we can truncate this uncond.
1171                    if prev_b.is_uncond()
1172                        && prev_b.end == b.start
1173                        && b.labels_at_this_branch.is_empty()
1174                    {
1175                        trace!(" -> uncond follows another uncond; truncating");
1176                        self.truncate_last_branch();
1177                        continue;
1178                    }
1179
1180                    // This uncond is immediately after a conditional, and the
1181                    // conditional's target is the end of this uncond, and we've
1182                    // already redirected labels to this uncond away; so we can
1183                    // truncate this uncond, flip the sense of the conditional, and
1184                    // set the conditional's target (in `latest_branches` and in
1185                    // `fixup_records`) to the uncond's target.
1186                    if prev_b.is_cond()
1187                        && prev_b.end == b.start
1188                        && self.resolve_label_offset(prev_b.target) == cur_off
1189                    {
1190                        trace!(
1191                            " -> uncond follows a conditional, and conditional's target resolves to current offset"
1192                        );
1193                        // Save the target of the uncond (this becomes the
1194                        // target of the cond), and truncate the uncond.
1195                        let target = b.target;
1196                        let data = prev_b.inverted.clone().unwrap();
1197                        self.truncate_last_branch();
1198
1199                        // Mutate the code and cond branch.
1200                        let off_before_edit = self.cur_offset();
1201                        let prev_b = self.latest_branches.last_mut().unwrap();
1202                        let not_inverted = SmallVec::from(
1203                            &self.data[(prev_b.start as usize)..(prev_b.end as usize)],
1204                        );
1205
1206                        // Low-level edit: replaces bytes of branch with
1207                        // inverted form. cur_off remains the same afterward, so
1208                        // we do not need to modify label data structures.
1209                        self.data.truncate(prev_b.start as usize);
1210                        self.data.extend_from_slice(&data[..]);
1211
1212                        // Save the original code as the inversion of the
1213                        // inverted branch, in case we later edit this branch
1214                        // again.
1215                        prev_b.inverted = Some(not_inverted);
1216                        self.pending_fixup_records[prev_b.fixup].label = target;
1217                        trace!(" -> reassigning target of condbr to {:?}", target);
1218                        prev_b.target = target;
1219                        debug_assert_eq!(off_before_edit, self.cur_offset());
1220                        continue;
1221                    }
1222                }
1223            }
1224
1225            // If we couldn't do anything with the last branch, then break.
1226            break;
1227        }
1228
1229        self.purge_latest_branches();
1230
1231        trace!(
1232            "leave optimize_branches:\n b = {:?}\n l = {:?}\n f = {:?}",
1233            self.latest_branches, self.labels_at_tail, self.pending_fixup_records
1234        );
1235    }
1236
1237    fn purge_latest_branches(&mut self) {
1238        // All of our branch simplification rules work only if a branch ends at
1239        // the tail of the buffer, with no following code; and branches are in
1240        // order in latest_branches; so if the last entry ends prior to
1241        // cur_offset, then clear all entries.
1242        let cur_off = self.cur_offset();
1243        if let Some(l) = self.latest_branches.last() {
1244            if l.end < cur_off {
1245                trace!("purge_latest_branches: removing branch {:?}", l);
1246                self.latest_branches.clear();
1247            }
1248        }
1249
1250        // Post-invariant: no invariant requires any branch to appear in
1251        // `latest_branches`; it is always optional. The list-clear above thus
1252        // preserves all semantics.
1253    }
1254
1255    /// Emit a trap at some point in the future with the specified code and
1256    /// stack map.
1257    ///
1258    /// This function returns a [`MachLabel`] which will be the future address
1259    /// of the trap. Jumps should refer to this label, likely by using the
1260    /// [`MachBuffer::use_label_at_offset`] method, to get a relocation
1261    /// patched in once the address of the trap is known.
1262    ///
1263    /// This will batch all traps into the end of the function.
1264    pub fn defer_trap(&mut self, code: TrapCode) -> MachLabel {
1265        let label = self.get_label();
1266        self.pending_traps.push(MachLabelTrap {
1267            label,
1268            code,
1269            loc: self.cur_srcloc.map(|(_start, loc)| loc),
1270        });
1271        label
1272    }
1273
1274    /// Is an island needed within the next N bytes?
1275    pub fn island_needed(&self, distance: CodeOffset) -> bool {
1276        let deadline = match self.fixup_records.peek() {
1277            Some(fixup) => fixup.deadline().min(self.pending_fixup_deadline),
1278            None => self.pending_fixup_deadline,
1279        };
1280        deadline < u32::MAX && self.worst_case_end_of_island(distance) > deadline
1281    }
1282
1283    /// Returns the maximal offset that islands can reach if `distance` more
1284    /// bytes are appended.
1285    ///
1286    /// This is used to determine if veneers need insertions since jumps that
1287    /// can't reach past this point must get a veneer of some form.
1288    fn worst_case_end_of_island(&self, distance: CodeOffset) -> CodeOffset {
1289        // Assume that all fixups will require veneers and that the veneers are
1290        // the worst-case size for each platform. This is an over-generalization
1291        // to avoid iterating over the `fixup_records` list or maintaining
1292        // information about it as we go along.
1293        let island_worst_case_size = ((self.fixup_records.len() + self.pending_fixup_records.len())
1294            as u32)
1295            * (I::LabelUse::worst_case_veneer_size())
1296            + self.pending_constants_size
1297            + (self.pending_traps.len() * I::TRAP_OPCODE.len()) as u32;
1298        self.cur_offset()
1299            .saturating_add(distance)
1300            .saturating_add(island_worst_case_size)
1301    }
1302
1303    /// Emit all pending constants and required pending veneers.
1304    ///
1305    /// Should only be called if `island_needed()` returns true, i.e., if we
1306    /// actually reach a deadline. It's not necessarily a problem to do so
1307    /// otherwise but it may result in unnecessary work during emission.
1308    pub fn emit_island(&mut self, distance: CodeOffset, ctrl_plane: &mut ControlPlane) {
1309        self.emit_island_maybe_forced(ForceVeneers::No, distance, ctrl_plane);
1310    }
1311
1312    /// Same as `emit_island`, but an internal API with a `force_veneers`
1313    /// argument to force all veneers to always get emitted for debugging.
1314    fn emit_island_maybe_forced(
1315        &mut self,
1316        force_veneers: ForceVeneers,
1317        distance: CodeOffset,
1318        ctrl_plane: &mut ControlPlane,
1319    ) {
1320        // We're going to purge fixups, so no latest-branch editing can happen
1321        // anymore.
1322        self.latest_branches.clear();
1323
1324        // End the current location tracking since anything emitted during this
1325        // function shouldn't be attributed to whatever the current source
1326        // location is.
1327        //
1328        // Note that the current source location, if it's set right now, will be
1329        // restored at the end of this island emission.
1330        let cur_loc = self.cur_srcloc.map(|(_, loc)| loc);
1331        if cur_loc.is_some() {
1332            self.end_srcloc();
1333        }
1334
1335        let forced_threshold = self.worst_case_end_of_island(distance);
1336
1337        // First flush out all traps/constants so we have more labels in case
1338        // fixups are applied against these labels.
1339        //
1340        // Note that traps are placed first since this typically happens at the
1341        // end of the function and for disassemblers we try to keep all the code
1342        // contiguously together.
1343        for MachLabelTrap { label, code, loc } in mem::take(&mut self.pending_traps) {
1344            // If this trap has source information associated with it then
1345            // emit this information for the trap instruction going out now too.
1346            if let Some(loc) = loc {
1347                self.start_srcloc(loc);
1348            }
1349            self.align_to(I::LabelUse::ALIGN);
1350            self.bind_label(label, ctrl_plane);
1351            self.add_trap(code);
1352            self.put_data(I::TRAP_OPCODE);
1353            if loc.is_some() {
1354                self.end_srcloc();
1355            }
1356        }
1357
1358        for constant in mem::take(&mut self.pending_constants) {
1359            let MachBufferConstant { align, size, .. } = self.constants[constant];
1360            let label = self.constants[constant].upcoming_label.take().unwrap();
1361            self.align_to(align);
1362            self.bind_label(label, ctrl_plane);
1363            self.used_constants.push((constant, self.cur_offset()));
1364            self.get_appended_space(size);
1365        }
1366
1367        // Either handle all pending fixups because they're ready or move them
1368        // onto the `BinaryHeap` tracking all pending fixups if they aren't
1369        // ready.
1370        assert!(self.latest_branches.is_empty());
1371        for fixup in mem::take(&mut self.pending_fixup_records) {
1372            if self.should_apply_fixup(&fixup, forced_threshold) {
1373                self.handle_fixup(fixup, force_veneers, forced_threshold);
1374            } else {
1375                self.fixup_records.push(fixup);
1376            }
1377        }
1378        self.pending_fixup_deadline = u32::MAX;
1379        while let Some(fixup) = self.fixup_records.peek() {
1380            trace!("emit_island: fixup {:?}", fixup);
1381
1382            // If this fixup shouldn't be applied, that means its label isn't
1383            // defined yet and there'll be remaining space to apply a veneer if
1384            // necessary in the future after this island. In that situation
1385            // because `fixup_records` is sorted by deadline this loop can
1386            // exit.
1387            if !self.should_apply_fixup(fixup, forced_threshold) {
1388                break;
1389            }
1390
1391            let fixup = self.fixup_records.pop().unwrap();
1392            self.handle_fixup(fixup, force_veneers, forced_threshold);
1393        }
1394
1395        if let Some(loc) = cur_loc {
1396            self.start_srcloc(loc);
1397        }
1398    }
1399
1400    fn should_apply_fixup(&self, fixup: &MachLabelFixup<I>, forced_threshold: CodeOffset) -> bool {
1401        let label_offset = self.resolve_label_offset(fixup.label);
1402        label_offset != UNKNOWN_LABEL_OFFSET || fixup.deadline() < forced_threshold
1403    }
1404
1405    fn handle_fixup(
1406        &mut self,
1407        fixup: MachLabelFixup<I>,
1408        force_veneers: ForceVeneers,
1409        forced_threshold: CodeOffset,
1410    ) {
1411        let MachLabelFixup {
1412            label,
1413            offset,
1414            kind,
1415        } = fixup;
1416        let start = offset as usize;
1417        let end = (offset + kind.patch_size()) as usize;
1418        let label_offset = self.resolve_label_offset(label);
1419
1420        if label_offset != UNKNOWN_LABEL_OFFSET {
1421            // If the offset of the label for this fixup is known then
1422            // we're going to do something here-and-now. We're either going
1423            // to patch the original offset because it's an in-bounds jump,
1424            // or we're going to generate a veneer, patch the fixup to jump
1425            // to the veneer, and then keep going.
1426            //
1427            // If the label comes after the original fixup, then we should
1428            // be guaranteed that the jump is in-bounds. Otherwise there's
1429            // a bug somewhere because this method wasn't called soon
1430            // enough. All forward-jumps are tracked and should get veneers
1431            // before their deadline comes and they're unable to jump
1432            // further.
1433            //
1434            // Otherwise if the label is before the fixup, then that's a
1435            // backwards jump. If it's past the maximum negative range
1436            // then we'll emit a veneer that to jump forward to which can
1437            // then jump backwards.
1438            let veneer_required = if label_offset >= offset {
1439                assert!((label_offset - offset) <= kind.max_pos_range());
1440                false
1441            } else {
1442                (offset - label_offset) > kind.max_neg_range()
1443            };
1444            trace!(
1445                " -> label_offset = {}, known, required = {} (pos {} neg {})",
1446                label_offset,
1447                veneer_required,
1448                kind.max_pos_range(),
1449                kind.max_neg_range()
1450            );
1451
1452            if (force_veneers == ForceVeneers::Yes && kind.supports_veneer()) || veneer_required {
1453                self.emit_veneer(label, offset, kind);
1454            } else {
1455                let slice = &mut self.data[start..end];
1456                trace!(
1457                    "patching in-range! slice = {slice:?}; offset = {offset:#x}; label_offset = {label_offset:#x}"
1458                );
1459                kind.patch(slice, offset, label_offset);
1460            }
1461        } else {
1462            // If the offset of this label is not known at this time then
1463            // that means that a veneer is required because after this
1464            // island the target can't be in range of the original target.
1465            assert!(forced_threshold - offset > kind.max_pos_range());
1466            self.emit_veneer(label, offset, kind);
1467        }
1468    }
1469
1470    /// Emits a "veneer" the `kind` code at `offset` to jump to `label`.
1471    ///
1472    /// This will generate extra machine code, using `kind`, to get a
1473    /// larger-jump-kind than `kind` allows. The code at `offset` is then
1474    /// patched to jump to our new code, and then the new code is enqueued for
1475    /// a fixup to get processed at some later time.
1476    fn emit_veneer(&mut self, label: MachLabel, offset: CodeOffset, kind: I::LabelUse) {
1477        // If this `kind` doesn't support a veneer then that's a bug in the
1478        // backend because we need to implement support for such a veneer.
1479        assert!(
1480            kind.supports_veneer(),
1481            "jump beyond the range of {kind:?} but a veneer isn't supported",
1482        );
1483
1484        // Allocate space for a veneer in the island.
1485        self.align_to(I::LabelUse::ALIGN);
1486        let veneer_offset = self.cur_offset();
1487        trace!("making a veneer at {}", veneer_offset);
1488        let start = offset as usize;
1489        let end = (offset + kind.patch_size()) as usize;
1490        let slice = &mut self.data[start..end];
1491        // Patch the original label use to refer to the veneer.
1492        trace!(
1493            "patching original at offset {} to veneer offset {}",
1494            offset, veneer_offset
1495        );
1496        kind.patch(slice, offset, veneer_offset);
1497        // Generate the veneer.
1498        let veneer_slice = self.get_appended_space(kind.veneer_size() as usize);
1499        let (veneer_fixup_off, veneer_label_use) =
1500            kind.generate_veneer(veneer_slice, veneer_offset);
1501        trace!(
1502            "generated veneer; fixup offset {}, label_use {:?}",
1503            veneer_fixup_off, veneer_label_use
1504        );
1505        // Register a new use of `label` with our new veneer fixup and
1506        // offset. This'll recalculate deadlines accordingly and
1507        // enqueue this fixup to get processed at some later
1508        // time.
1509        self.use_label_at_offset(veneer_fixup_off, label, veneer_label_use);
1510    }
1511
1512    fn finish_emission_maybe_forcing_veneers(
1513        &mut self,
1514        force_veneers: ForceVeneers,
1515        ctrl_plane: &mut ControlPlane,
1516    ) {
1517        while !self.pending_constants.is_empty()
1518            || !self.pending_traps.is_empty()
1519            || !self.fixup_records.is_empty()
1520            || !self.pending_fixup_records.is_empty()
1521        {
1522            // `emit_island()` will emit any pending veneers and constants, and
1523            // as a side-effect, will also take care of any fixups with resolved
1524            // labels eagerly.
1525            self.emit_island_maybe_forced(force_veneers, u32::MAX, ctrl_plane);
1526        }
1527
1528        // Ensure that all labels have been fixed up after the last island is emitted. This is a
1529        // full (release-mode) assert because an unresolved label means the emitted code is
1530        // incorrect.
1531        assert!(self.fixup_records.is_empty());
1532        assert!(self.pending_fixup_records.is_empty());
1533    }
1534
1535    /// Finish any deferred emissions and/or fixups.
1536    pub fn finish(
1537        mut self,
1538        constants: &VCodeConstants,
1539        ctrl_plane: &mut ControlPlane,
1540    ) -> MachBufferFinalized<Stencil> {
1541        let _tt = timing::vcode_emit_finish();
1542
1543        self.finish_emission_maybe_forcing_veneers(ForceVeneers::No, ctrl_plane);
1544
1545        let alignment = self.finish_constants(constants);
1546
1547        // Resolve all labels to their offsets.
1548        let finalized_relocs = self
1549            .relocs
1550            .iter()
1551            .map(|reloc| FinalizedMachReloc {
1552                offset: reloc.offset,
1553                kind: reloc.kind,
1554                addend: reloc.addend,
1555                target: match &reloc.target {
1556                    RelocTarget::ExternalName(name) => {
1557                        FinalizedRelocTarget::ExternalName(name.clone())
1558                    }
1559                    RelocTarget::Label(label) => {
1560                        FinalizedRelocTarget::Func(self.resolve_label_offset(*label))
1561                    }
1562                },
1563            })
1564            .collect();
1565
1566        let finalized_exception_handlers = self
1567            .exception_handlers
1568            .iter()
1569            .map(|handler| handler.finalize(|label| self.resolve_label_offset(label)))
1570            .collect();
1571
1572        let mut srclocs = self.srclocs;
1573        srclocs.sort_by_key(|entry| entry.start);
1574
1575        MachBufferFinalized {
1576            data: self.data,
1577            relocs: finalized_relocs,
1578            traps: self.traps,
1579            call_sites: self.call_sites,
1580            patchable_call_sites: self.patchable_call_sites,
1581            exception_handlers: finalized_exception_handlers,
1582            srclocs,
1583            debug_tags: self.debug_tags,
1584            debug_tag_pool: self.debug_tag_pool,
1585            user_stack_maps: self.user_stack_maps,
1586            unwind_info: self.unwind_info,
1587            alignment,
1588            frame_layout: self.frame_layout,
1589            nop: I::gen_nop_unit(),
1590        }
1591    }
1592
1593    /// Add an external relocation at the given offset.
1594    pub fn add_reloc_at_offset<T: Into<RelocTarget> + Clone>(
1595        &mut self,
1596        offset: CodeOffset,
1597        kind: Reloc,
1598        target: &T,
1599        addend: Addend,
1600    ) {
1601        let target: RelocTarget = target.clone().into();
1602        // FIXME(#3277): This should use `I::LabelUse::from_reloc` to optionally
1603        // generate a label-use statement to track whether an island is possibly
1604        // needed to escape this function to actually get to the external name.
1605        // This is most likely to come up on AArch64 where calls between
1606        // functions use a 26-bit signed offset which gives +/- 64MB. This means
1607        // that if a function is 128MB in size and there's a call in the middle
1608        // it's impossible to reach the actual target. Also, while it's
1609        // technically possible to jump to the start of a function and then jump
1610        // further, island insertion below always inserts islands after
1611        // previously appended code so for Cranelift's own implementation this
1612        // is also a problem for 64MB functions on AArch64 which start with a
1613        // call instruction, those won't be able to escape.
1614        //
1615        // Ideally what needs to happen here is that a `LabelUse` is
1616        // transparently generated (or call-sites of this function are audited
1617        // to generate a `LabelUse` instead) and tracked internally. The actual
1618        // relocation would then change over time if and when a veneer is
1619        // inserted, where the relocation here would be patched by this
1620        // `MachBuffer` to jump to the veneer. The problem, though, is that all
1621        // this still needs to end up, in the case of a singular function,
1622        // generating a final relocation pointing either to this particular
1623        // relocation or to the veneer inserted. Additionally
1624        // `MachBuffer` needs the concept of a label which will never be
1625        // resolved, so `emit_island` doesn't trip over not actually ever
1626        // knowing what some labels are. Currently the loop in
1627        // `finish_emission_maybe_forcing_veneers` would otherwise infinitely
1628        // loop.
1629        //
1630        // For now this means that because relocs aren't tracked at all that
1631        // AArch64 functions have a rough size limits of 64MB. For now that's
1632        // somewhat reasonable and the failure mode is a panic in `MachBuffer`
1633        // when a relocation can't otherwise be resolved later, so it shouldn't
1634        // actually result in any memory unsafety or anything like that.
1635        self.relocs.push(MachReloc {
1636            offset,
1637            kind,
1638            target,
1639            addend,
1640        });
1641    }
1642
1643    /// Add an external relocation at the current offset.
1644    pub fn add_reloc<T: Into<RelocTarget> + Clone>(
1645        &mut self,
1646        kind: Reloc,
1647        target: &T,
1648        addend: Addend,
1649    ) {
1650        self.add_reloc_at_offset(self.data.len() as CodeOffset, kind, target, addend);
1651    }
1652
1653    /// Add a trap record at the current offset.
1654    pub fn add_trap(&mut self, code: TrapCode) {
1655        self.traps.push(MachTrap {
1656            offset: self.data.len() as CodeOffset,
1657            code,
1658        });
1659    }
1660
1661    /// Add a call-site record at the current offset.
1662    pub fn add_call_site(&mut self) {
1663        self.add_try_call_site(None, core::iter::empty());
1664    }
1665
1666    /// Add a call-site record at the current offset with exception
1667    /// handlers.
1668    pub fn add_try_call_site(
1669        &mut self,
1670        frame_offset: Option<u32>,
1671        exception_handlers: impl Iterator<Item = MachExceptionHandler>,
1672    ) {
1673        let start = u32::try_from(self.exception_handlers.len()).unwrap();
1674        self.exception_handlers.extend(exception_handlers);
1675        let end = u32::try_from(self.exception_handlers.len()).unwrap();
1676        let exception_handler_range = start..end;
1677
1678        self.call_sites.push(MachCallSite {
1679            ret_addr: self.data.len() as CodeOffset,
1680            frame_offset,
1681            exception_handler_range,
1682        });
1683    }
1684
1685    /// Add a patchable call record at the current offset The actual
1686    /// call is expected to have been emitted; the VCodeInst trait
1687    /// specifies how to NOP it out, and we carry that information to
1688    /// the finalized Machbuffer.
1689    pub fn add_patchable_call_site(&mut self, len: u32) {
1690        self.patchable_call_sites.push(MachPatchableCallSite {
1691            ret_addr: self.cur_offset(),
1692            len,
1693        });
1694    }
1695
1696    /// Add an unwind record at the current offset.
1697    pub fn add_unwind(&mut self, unwind: UnwindInst) {
1698        self.unwind_info.push((self.cur_offset(), unwind));
1699    }
1700
1701    /// Set the `SourceLoc` for code from this offset until the offset at the
1702    /// next call to `end_srcloc()`.
1703    /// Returns the current [CodeOffset] and [RelSourceLoc].
1704    pub fn start_srcloc(&mut self, loc: RelSourceLoc) -> (CodeOffset, RelSourceLoc) {
1705        let cur = (self.cur_offset(), loc);
1706        self.cur_srcloc = Some(cur);
1707        cur
1708    }
1709
1710    /// Mark the end of the `SourceLoc` segment started at the last
1711    /// `start_srcloc()` call.
1712    pub fn end_srcloc(&mut self) {
1713        let (start, loc) = self
1714            .cur_srcloc
1715            .take()
1716            .expect("end_srcloc() called without start_srcloc()");
1717        let end = self.cur_offset();
1718        // Skip zero-length extends.
1719        debug_assert!(end >= start);
1720        if end > start {
1721            self.srclocs.push(MachSrcLoc { start, end, loc });
1722        }
1723    }
1724
1725    /// Push a user stack map onto this buffer.
1726    ///
1727    /// The stack map is associated with the given `return_addr` code
1728    /// offset. This must be the PC for the instruction just *after* this stack
1729    /// map's associated instruction. For example in the sequence `call $foo;
1730    /// add r8, rax`, the `return_addr` must be the offset of the start of the
1731    /// `add` instruction.
1732    ///
1733    /// Stack maps must be pushed in sorted `return_addr` order.
1734    pub fn push_user_stack_map(
1735        &mut self,
1736        emit_state: &I::State,
1737        return_addr: CodeOffset,
1738        mut stack_map: ir::UserStackMap,
1739    ) {
1740        let span = emit_state.frame_layout().active_size();
1741        trace!("Adding user stack map @ {return_addr:#x} spanning {span} bytes: {stack_map:?}");
1742
1743        debug_assert!(
1744            self.user_stack_maps
1745                .last()
1746                .map_or(true, |(prev_addr, _, _)| *prev_addr < return_addr),
1747            "pushed stack maps out of order: {} is not less than {}",
1748            self.user_stack_maps.last().unwrap().0,
1749            return_addr,
1750        );
1751
1752        stack_map.finalize(emit_state.frame_layout().sp_to_sized_stack_slots());
1753        self.user_stack_maps.push((return_addr, span, stack_map));
1754    }
1755
1756    /// Push a debug tag associated with the current buffer offset.
1757    pub fn push_debug_tags(&mut self, pos: MachDebugTagPos, tags: &[DebugTag]) {
1758        trace!("debug tags at offset {}: {tags:?}", self.cur_offset());
1759        let start = u32::try_from(self.debug_tag_pool.len()).unwrap();
1760        self.debug_tag_pool.extend(tags.iter().cloned());
1761        let end = u32::try_from(self.debug_tag_pool.len()).unwrap();
1762        self.debug_tags.push(MachDebugTags {
1763            offset: self.cur_offset(),
1764            pos,
1765            range: start..end,
1766        });
1767    }
1768
1769    /// Increase the alignment of the buffer to the given alignment if bigger
1770    /// than the current alignment.
1771    pub fn set_log2_min_function_alignment(&mut self, align_to: u8) {
1772        self.min_alignment = self.min_alignment.max(
1773            1u32.checked_shl(u32::from(align_to))
1774                .expect("log2_min_function_alignment too large"),
1775        );
1776    }
1777
1778    /// Set the frame layout metadata.
1779    pub fn set_frame_layout(&mut self, frame_layout: MachBufferFrameLayout) {
1780        debug_assert!(self.frame_layout.is_none());
1781        self.frame_layout = Some(frame_layout);
1782    }
1783}
1784
1785impl<I: VCodeInst> Extend<u8> for MachBuffer<I> {
1786    fn extend<T: IntoIterator<Item = u8>>(&mut self, iter: T) {
1787        for b in iter {
1788            self.put1(b);
1789        }
1790    }
1791}
1792
1793impl<T: CompilePhase> MachBufferFinalized<T> {
1794    /// Get a list of source location mapping tuples in sorted-by-start-offset order.
1795    pub fn get_srclocs_sorted(&self) -> &[T::MachSrcLocType] {
1796        &self.srclocs[..]
1797    }
1798
1799    /// Get all debug tags, sorted by associated offset.
1800    pub fn debug_tags(&self) -> impl Iterator<Item = MachBufferDebugTagList<'_>> {
1801        self.debug_tags.iter().map(|tags| {
1802            let start = usize::try_from(tags.range.start).unwrap();
1803            let end = usize::try_from(tags.range.end).unwrap();
1804            MachBufferDebugTagList {
1805                offset: tags.offset,
1806                pos: tags.pos,
1807                tags: &self.debug_tag_pool[start..end],
1808            }
1809        })
1810    }
1811
1812    /// Get the total required size for the code.
1813    pub fn total_size(&self) -> CodeOffset {
1814        self.data.len() as CodeOffset
1815    }
1816
1817    /// Return the code in this mach buffer as a hex string for testing purposes.
1818    pub fn stringify_code_bytes(&self) -> String {
1819        // This is pretty lame, but whatever ..
1820        use std::fmt::Write;
1821        let mut s = String::with_capacity(self.data.len() * 2);
1822        for b in &self.data {
1823            write!(&mut s, "{b:02X}").unwrap();
1824        }
1825        s
1826    }
1827
1828    /// Get the code bytes.
1829    pub fn data(&self) -> &[u8] {
1830        // N.B.: we emit every section into the .text section as far as
1831        // the `CodeSink` is concerned; we do not bother to segregate
1832        // the contents into the actual program text, the jumptable and the
1833        // rodata (constant pool). This allows us to generate code assuming
1834        // that these will not be relocated relative to each other, and avoids
1835        // having to designate each section as belonging in one of the three
1836        // fixed categories defined by `CodeSink`. If this becomes a problem
1837        // later (e.g. because of memory permissions or similar), we can
1838        // add this designation and segregate the output; take care, however,
1839        // to add the appropriate relocations in this case.
1840
1841        &self.data[..]
1842    }
1843
1844    /// Get the list of external relocations for this code.
1845    pub fn relocs(&self) -> &[FinalizedMachReloc] {
1846        &self.relocs[..]
1847    }
1848
1849    /// Get the list of trap records for this code.
1850    pub fn traps(&self) -> &[MachTrap] {
1851        &self.traps[..]
1852    }
1853
1854    /// Get the user stack map metadata for this code.
1855    pub fn user_stack_maps(&self) -> &[(CodeOffset, u32, ir::UserStackMap)] {
1856        &self.user_stack_maps
1857    }
1858
1859    /// Take this buffer's user strack map metadata.
1860    pub fn take_user_stack_maps(&mut self) -> SmallVec<[(CodeOffset, u32, ir::UserStackMap); 8]> {
1861        mem::take(&mut self.user_stack_maps)
1862    }
1863
1864    /// Get the list of call sites for this code, along with
1865    /// associated exception handlers.
1866    ///
1867    /// Each item yielded by the returned iterator is a struct with:
1868    ///
1869    /// - The call site metadata record, with a `ret_addr` field
1870    ///   directly accessible and denoting the offset of the return
1871    ///   address into this buffer's code.
1872    /// - The slice of pairs of exception tags and code offsets
1873    ///   denoting exception-handler entry points associated with this
1874    ///   call site.
1875    pub fn call_sites(&self) -> impl Iterator<Item = FinalizedMachCallSite<'_>> + '_ {
1876        self.call_sites.iter().map(|call_site| {
1877            let handler_range = call_site.exception_handler_range.clone();
1878            let handler_range = usize::try_from(handler_range.start).unwrap()
1879                ..usize::try_from(handler_range.end).unwrap();
1880            FinalizedMachCallSite {
1881                ret_addr: call_site.ret_addr,
1882                frame_offset: call_site.frame_offset,
1883                exception_handlers: &self.exception_handlers[handler_range],
1884            }
1885        })
1886    }
1887
1888    /// Get the frame layout, if known.
1889    pub fn frame_layout(&self) -> Option<&MachBufferFrameLayout> {
1890        self.frame_layout.as_ref()
1891    }
1892
1893    /// Get the list of patchable call sites for this code.
1894    ///
1895    /// Each location in the buffer contains the bytes for a call
1896    /// instruction to the specified target. If the call is to be
1897    /// patched out, the bytes in the region should be replaced with
1898    /// those given in the `MachBufferFinalized::nop` array, repeated
1899    /// as many times as necessary. (The length of the patchable
1900    /// region is guaranteed to be an integer multiple of that NOP
1901    /// unit size.)
1902    pub fn patchable_call_sites(&self) -> impl Iterator<Item = &MachPatchableCallSite> + '_ {
1903        self.patchable_call_sites.iter().map(|call_site| {
1904            debug_assert!(call_site.len as usize % self.nop.len() == 0);
1905            call_site
1906        })
1907    }
1908}
1909
1910/// An item in the exception-handler list for a callsite, with label
1911/// references.  Items are interpreted in left-to-right order and the
1912/// first match wins.
1913#[derive(Clone, Copy, Debug, PartialEq, Eq)]
1914pub enum MachExceptionHandler {
1915    /// A specific tag (in the current dynamic context) should be
1916    /// handled by the code at the given offset.
1917    Tag(ExceptionTag, MachLabel),
1918    /// All exceptions should be handled by the code at the given
1919    /// offset.
1920    Default(MachLabel),
1921    /// The dynamic context for interpreting tags is updated to the
1922    /// value stored in the given machine location (in this frame's
1923    /// context).
1924    Context(ExceptionContextLoc),
1925}
1926
1927impl MachExceptionHandler {
1928    fn finalize<F: Fn(MachLabel) -> CodeOffset>(self, f: F) -> FinalizedMachExceptionHandler {
1929        match self {
1930            Self::Tag(tag, label) => FinalizedMachExceptionHandler::Tag(tag, f(label)),
1931            Self::Default(label) => FinalizedMachExceptionHandler::Default(f(label)),
1932            Self::Context(loc) => FinalizedMachExceptionHandler::Context(loc),
1933        }
1934    }
1935}
1936
1937/// An item in the exception-handler list for a callsite, with final
1938/// (lowered) code offsets. Items are interpreted in left-to-right
1939/// order and the first match wins.
1940#[derive(Clone, Copy, Debug, PartialEq, Eq)]
1941#[cfg_attr(
1942    feature = "enable-serde",
1943    derive(serde_derive::Serialize, serde_derive::Deserialize)
1944)]
1945pub enum FinalizedMachExceptionHandler {
1946    /// A specific tag (in the current dynamic context) should be
1947    /// handled by the code at the given offset.
1948    Tag(ExceptionTag, CodeOffset),
1949    /// All exceptions should be handled by the code at the given
1950    /// offset.
1951    Default(CodeOffset),
1952    /// The dynamic context for interpreting tags is updated to the
1953    /// value stored in the given machine location (in this frame's
1954    /// context).
1955    Context(ExceptionContextLoc),
1956}
1957
1958/// A location for a dynamic exception context value.
1959#[derive(Clone, Copy, Debug, PartialEq, Eq)]
1960#[cfg_attr(
1961    feature = "enable-serde",
1962    derive(serde_derive::Serialize, serde_derive::Deserialize)
1963)]
1964pub enum ExceptionContextLoc {
1965    /// An offset from SP at the callsite.
1966    SPOffset(u32),
1967    /// A GPR at the callsite. The physical register number for the
1968    /// GPR register file on the target architecture is used.
1969    GPR(u8),
1970}
1971
1972/// Metadata about a constant.
1973struct MachBufferConstant {
1974    /// A label which has not yet been bound which can be used for this
1975    /// constant.
1976    ///
1977    /// This is lazily created when a label is requested for a constant and is
1978    /// cleared when a constant is emitted.
1979    upcoming_label: Option<MachLabel>,
1980    /// Required alignment.
1981    align: CodeOffset,
1982    /// The byte size of this constant.
1983    size: usize,
1984}
1985
1986/// A trap that is deferred to the next time an island is emitted for either
1987/// traps, constants, or fixups.
1988struct MachLabelTrap {
1989    /// This label will refer to the trap's offset.
1990    label: MachLabel,
1991    /// The code associated with this trap.
1992    code: TrapCode,
1993    /// An optional source location to assign for this trap.
1994    loc: Option<RelSourceLoc>,
1995}
1996
1997/// A fixup to perform on the buffer once code is emitted. Fixups always refer
1998/// to labels and patch the code based on label offsets. Hence, they are like
1999/// relocations, but internal to one buffer.
2000#[derive(Debug)]
2001struct MachLabelFixup<I: VCodeInst> {
2002    /// The label whose offset controls this fixup.
2003    label: MachLabel,
2004    /// The offset to fix up / patch to refer to this label.
2005    offset: CodeOffset,
2006    /// The kind of fixup. This is architecture-specific; each architecture may have,
2007    /// e.g., several types of branch instructions, each with differently-sized
2008    /// offset fields and different places within the instruction to place the
2009    /// bits.
2010    kind: I::LabelUse,
2011}
2012
2013impl<I: VCodeInst> MachLabelFixup<I> {
2014    fn deadline(&self) -> CodeOffset {
2015        self.offset.saturating_add(self.kind.max_pos_range())
2016    }
2017}
2018
2019impl<I: VCodeInst> PartialEq for MachLabelFixup<I> {
2020    fn eq(&self, other: &Self) -> bool {
2021        self.deadline() == other.deadline()
2022    }
2023}
2024
2025impl<I: VCodeInst> Eq for MachLabelFixup<I> {}
2026
2027impl<I: VCodeInst> PartialOrd for MachLabelFixup<I> {
2028    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2029        Some(self.cmp(other))
2030    }
2031}
2032
2033impl<I: VCodeInst> Ord for MachLabelFixup<I> {
2034    fn cmp(&self, other: &Self) -> Ordering {
2035        other.deadline().cmp(&self.deadline())
2036    }
2037}
2038
2039/// A relocation resulting from a compilation.
2040#[derive(Clone, Debug, PartialEq)]
2041#[cfg_attr(
2042    feature = "enable-serde",
2043    derive(serde_derive::Serialize, serde_derive::Deserialize)
2044)]
2045pub struct MachRelocBase<T> {
2046    /// The offset at which the relocation applies, *relative to the
2047    /// containing section*.
2048    pub offset: CodeOffset,
2049    /// The kind of relocation.
2050    pub kind: Reloc,
2051    /// The external symbol / name to which this relocation refers.
2052    pub target: T,
2053    /// The addend to add to the symbol value.
2054    pub addend: i64,
2055}
2056
2057type MachReloc = MachRelocBase<RelocTarget>;
2058
2059/// A relocation resulting from a compilation.
2060pub type FinalizedMachReloc = MachRelocBase<FinalizedRelocTarget>;
2061
2062/// A Relocation target
2063#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2064pub enum RelocTarget {
2065    /// Points to an [ExternalName] outside the current function.
2066    ExternalName(ExternalName),
2067    /// Points to a [MachLabel] inside this function.
2068    /// This is different from [MachLabelFixup] in that both the relocation and the
2069    /// label will be emitted and are only resolved at link time.
2070    ///
2071    /// There is no reason to prefer this over [MachLabelFixup] unless the ABI requires it.
2072    Label(MachLabel),
2073}
2074
2075impl From<ExternalName> for RelocTarget {
2076    fn from(name: ExternalName) -> Self {
2077        Self::ExternalName(name)
2078    }
2079}
2080
2081impl From<MachLabel> for RelocTarget {
2082    fn from(label: MachLabel) -> Self {
2083        Self::Label(label)
2084    }
2085}
2086
2087/// A Relocation target
2088#[derive(Debug, Clone, PartialEq, Eq, Hash)]
2089#[cfg_attr(
2090    feature = "enable-serde",
2091    derive(serde_derive::Serialize, serde_derive::Deserialize)
2092)]
2093pub enum FinalizedRelocTarget {
2094    /// Points to an [ExternalName] outside the current function.
2095    ExternalName(ExternalName),
2096    /// Points to a [CodeOffset] from the start of the current function.
2097    Func(CodeOffset),
2098}
2099
2100impl FinalizedRelocTarget {
2101    /// Returns a display for the current [FinalizedRelocTarget], with extra context to prettify the
2102    /// output.
2103    pub fn display<'a>(&'a self, params: Option<&'a FunctionParameters>) -> String {
2104        match self {
2105            FinalizedRelocTarget::ExternalName(name) => format!("{}", name.display(params)),
2106            FinalizedRelocTarget::Func(offset) => format!("func+{offset}"),
2107        }
2108    }
2109}
2110
2111/// A trap record resulting from a compilation.
2112#[derive(Clone, Debug, PartialEq)]
2113#[cfg_attr(
2114    feature = "enable-serde",
2115    derive(serde_derive::Serialize, serde_derive::Deserialize)
2116)]
2117pub struct MachTrap {
2118    /// The offset at which the trap instruction occurs, *relative to the
2119    /// containing section*.
2120    pub offset: CodeOffset,
2121    /// The trap code.
2122    pub code: TrapCode,
2123}
2124
2125/// A call site record resulting from a compilation.
2126#[derive(Clone, Debug, PartialEq)]
2127#[cfg_attr(
2128    feature = "enable-serde",
2129    derive(serde_derive::Serialize, serde_derive::Deserialize)
2130)]
2131pub struct MachCallSite {
2132    /// The offset of the call's return address, *relative to the
2133    /// start of the buffer*.
2134    pub ret_addr: CodeOffset,
2135
2136    /// The offset from the FP at this callsite down to the SP when
2137    /// the call occurs, if known. In other words, the size of the
2138    /// stack frame up to the saved FP slot. Useful to recover the
2139    /// start of the stack frame and to look up dynamic contexts
2140    /// stored in [`ExceptionContextLoc::SPOffset`].
2141    ///
2142    /// If `None`, the compiler backend did not specify a frame
2143    /// offset. The runtime in use with the compiled code may require
2144    /// the frame offset if exception handlers are present or dynamic
2145    /// context is used, but that is not Cranelift's concern: the
2146    /// frame offset is optional at this level.
2147    pub frame_offset: Option<u32>,
2148
2149    /// Range in `exception_handlers` corresponding to the exception
2150    /// handlers for this callsite.
2151    exception_handler_range: Range<u32>,
2152}
2153
2154/// A call site record resulting from a compilation.
2155#[derive(Clone, Debug, PartialEq)]
2156pub struct FinalizedMachCallSite<'a> {
2157    /// The offset of the call's return address, *relative to the
2158    /// start of the buffer*.
2159    pub ret_addr: CodeOffset,
2160
2161    /// The offset from the FP at this callsite down to the SP when
2162    /// the call occurs, if known. In other words, the size of the
2163    /// stack frame up to the saved FP slot. Useful to recover the
2164    /// start of the stack frame and to look up dynamic contexts
2165    /// stored in [`ExceptionContextLoc::SPOffset`].
2166    ///
2167    /// If `None`, the compiler backend did not specify a frame
2168    /// offset. The runtime in use with the compiled code may require
2169    /// the frame offset if exception handlers are present or dynamic
2170    /// context is used, but that is not Cranelift's concern: the
2171    /// frame offset is optional at this level.
2172    pub frame_offset: Option<u32>,
2173
2174    /// Exception handlers at this callsite, with target offsets
2175    /// *relative to the start of the buffer*.
2176    pub exception_handlers: &'a [FinalizedMachExceptionHandler],
2177}
2178
2179/// A patchable call site record resulting from a compilation.
2180#[derive(Clone, Debug, PartialEq)]
2181#[cfg_attr(
2182    feature = "enable-serde",
2183    derive(serde_derive::Serialize, serde_derive::Deserialize)
2184)]
2185pub struct MachPatchableCallSite {
2186    /// The offset of the call's return address (i.e., the address
2187    /// after the end of the patchable region), *relative to the start
2188    /// of the buffer*.
2189    pub ret_addr: CodeOffset,
2190
2191    /// The length of the region to be patched by NOP bytes.
2192    pub len: u32,
2193}
2194
2195/// A source-location mapping resulting from a compilation.
2196#[derive(PartialEq, Debug, Clone)]
2197#[cfg_attr(
2198    feature = "enable-serde",
2199    derive(serde_derive::Serialize, serde_derive::Deserialize)
2200)]
2201pub struct MachSrcLoc<T: CompilePhase> {
2202    /// The start of the region of code corresponding to a source location.
2203    /// This is relative to the start of the function, not to the start of the
2204    /// section.
2205    pub start: CodeOffset,
2206    /// The end of the region of code corresponding to a source location.
2207    /// This is relative to the start of the function, not to the start of the
2208    /// section.
2209    pub end: CodeOffset,
2210    /// The source location.
2211    pub loc: T::SourceLocType,
2212}
2213
2214impl MachSrcLoc<Stencil> {
2215    fn apply_base_srcloc(self, base_srcloc: SourceLoc) -> MachSrcLoc<Final> {
2216        MachSrcLoc {
2217            start: self.start,
2218            end: self.end,
2219            loc: self.loc.expand(base_srcloc),
2220        }
2221    }
2222}
2223
2224/// Record of branch instruction in the buffer, to facilitate editing.
2225#[derive(Clone, Debug)]
2226struct MachBranch {
2227    start: CodeOffset,
2228    end: CodeOffset,
2229    target: MachLabel,
2230    fixup: usize,
2231    inverted: Option<SmallVec<[u8; 8]>>,
2232    /// All labels pointing to the start of this branch. For correctness, this
2233    /// *must* be complete (i.e., must contain all labels whose resolved offsets
2234    /// are at the start of this branch): we rely on being able to redirect all
2235    /// labels that could jump to this branch before removing it, if it is
2236    /// otherwise unreachable.
2237    labels_at_this_branch: SmallVec<[MachLabel; 4]>,
2238}
2239
2240impl MachBranch {
2241    fn is_cond(&self) -> bool {
2242        self.inverted.is_some()
2243    }
2244    fn is_uncond(&self) -> bool {
2245        self.inverted.is_none()
2246    }
2247}
2248
2249/// Stack-frame layout information carried through to machine
2250/// code. This provides sufficient information to interpret an active
2251/// stack frame from a running function, if provided.
2252#[derive(Clone, Debug, PartialEq)]
2253#[cfg_attr(
2254    feature = "enable-serde",
2255    derive(serde_derive::Serialize, serde_derive::Deserialize)
2256)]
2257pub struct MachBufferFrameLayout {
2258    /// Offset from bottom of frame to FP (near top of frame). This
2259    /// allows reading the frame given only FP.
2260    pub frame_to_fp_offset: u32,
2261    /// Offset from bottom of frame for each StackSlot,
2262    pub stackslots: SecondaryMap<ir::StackSlot, MachBufferStackSlot>,
2263}
2264
2265/// Descriptor for a single stack slot in the compiled function.
2266#[derive(Clone, Debug, PartialEq, Default)]
2267#[cfg_attr(
2268    feature = "enable-serde",
2269    derive(serde_derive::Serialize, serde_derive::Deserialize)
2270)]
2271pub struct MachBufferStackSlot {
2272    /// Offset from the bottom of the stack frame.
2273    pub offset: u32,
2274
2275    /// User-provided key to describe this stack slot.
2276    pub key: Option<ir::StackSlotKey>,
2277}
2278
2279/// Debug tags: a sequence of references to a stack slot, or a
2280/// user-defined value, at a particular PC.
2281#[derive(Clone, Debug, PartialEq)]
2282#[cfg_attr(
2283    feature = "enable-serde",
2284    derive(serde_derive::Serialize, serde_derive::Deserialize)
2285)]
2286pub(crate) struct MachDebugTags {
2287    /// Offset at which this tag applies.
2288    pub offset: CodeOffset,
2289
2290    /// Position on the attached instruction. This indicates whether
2291    /// the tags attach to the prior instruction (i.e., as a return
2292    /// point from a call) or the current instruction (i.e., as a PC
2293    /// seen during a trap).
2294    pub pos: MachDebugTagPos,
2295
2296    /// The range in the tag pool.
2297    pub range: Range<u32>,
2298}
2299
2300/// Debug tag position on an instruction.
2301///
2302/// We need to distinguish position on an instruction, and not just
2303/// use offsets, because of the following case:
2304///
2305/// ```plain
2306/// <tag1, tag2> call ...
2307/// <tag3, tag4> trapping_store ...
2308/// ```
2309///
2310/// If the stack is walked and interpreted with debug tags while
2311/// within the call, the PC seen will be the return point, i.e. the
2312/// address after the call. If the stack is walked and interpreted
2313/// with debug tags upon a trap of the following instruction, it will
2314/// be the PC of that instruction -- which is the same PC! Thus to
2315/// disambiguate which tags we want, we attach a "pre/post" flag to
2316/// every group of tags at an offset; and when we look up tags, we
2317/// look them up for an offset and "position" at that offset.
2318///
2319/// Thus there are logically two positions at every offset -- so the
2320/// above will be emitted as
2321///
2322/// ```plain
2323/// 0: call ...
2324///                          4, post: <tag1, tag2>
2325///                          4, pre: <tag3, tag4>
2326/// 4: trapping_store ...
2327/// ```
2328#[derive(Clone, Copy, Debug, PartialEq, Eq)]
2329#[cfg_attr(
2330    feature = "enable-serde",
2331    derive(serde_derive::Serialize, serde_derive::Deserialize)
2332)]
2333pub enum MachDebugTagPos {
2334    /// Tags attached after the instruction that ends at this offset.
2335    ///
2336    /// This is used to attach tags to a call, because the PC we see
2337    /// when walking the stack is the *return point*.
2338    Post,
2339    /// Tags attached before the instruction that starts at this offset.
2340    ///
2341    /// This is used to attach tags to every other kind of
2342    /// instruction, because the PC we see when processing a trap of
2343    /// that instruction is the PC of that instruction, not the
2344    /// following one.
2345    Pre,
2346}
2347
2348/// Iterator item for visiting debug tags.
2349pub struct MachBufferDebugTagList<'a> {
2350    /// Offset at which this tag applies.
2351    pub offset: CodeOffset,
2352
2353    /// Position at this offset ("post", attaching to prior
2354    /// instruction, or "pre", attaching to next instruction).
2355    pub pos: MachDebugTagPos,
2356
2357    /// The underlying tags.
2358    pub tags: &'a [DebugTag],
2359}
2360
2361/// Implementation of the `TextSectionBuilder` trait backed by `MachBuffer`.
2362///
2363/// Note that `MachBuffer` was primarily written for intra-function references
2364/// of jumps between basic blocks, but it's also quite usable for entire text
2365/// sections and resolving references between functions themselves. This
2366/// builder interprets "blocks" as labeled functions for the purposes of
2367/// resolving labels internally in the buffer.
2368pub struct MachTextSectionBuilder<I: VCodeInst> {
2369    buf: MachBuffer<I>,
2370    next_func: usize,
2371    force_veneers: ForceVeneers,
2372}
2373
2374impl<I: VCodeInst> MachTextSectionBuilder<I> {
2375    /// Creates a new text section builder which will have `num_funcs` functions
2376    /// pushed into it.
2377    pub fn new(num_funcs: usize) -> MachTextSectionBuilder<I> {
2378        let mut buf = MachBuffer::new();
2379        buf.reserve_labels_for_blocks(num_funcs);
2380        MachTextSectionBuilder {
2381            buf,
2382            next_func: 0,
2383            force_veneers: ForceVeneers::No,
2384        }
2385    }
2386}
2387
2388impl<I: VCodeInst> TextSectionBuilder for MachTextSectionBuilder<I> {
2389    fn append(
2390        &mut self,
2391        labeled: bool,
2392        func: &[u8],
2393        align: u32,
2394        ctrl_plane: &mut ControlPlane,
2395    ) -> u64 {
2396        // Conditionally emit an island if it's necessary to resolve jumps
2397        // between functions which are too far away.
2398        let size = func.len() as u32;
2399        if self.force_veneers == ForceVeneers::Yes || self.buf.island_needed(size) {
2400            self.buf
2401                .emit_island_maybe_forced(self.force_veneers, size, ctrl_plane);
2402        }
2403
2404        self.buf.align_to(align);
2405        let pos = self.buf.cur_offset();
2406        if labeled {
2407            self.buf.bind_label(
2408                MachLabel::from_block(BlockIndex::new(self.next_func)),
2409                ctrl_plane,
2410            );
2411            self.next_func += 1;
2412        }
2413        self.buf.put_data(func);
2414        u64::from(pos)
2415    }
2416
2417    fn resolve_reloc(&mut self, offset: u64, reloc: Reloc, addend: Addend, target: usize) -> bool {
2418        crate::trace!(
2419            "Resolving relocation @ {offset:#x} + {addend:#x} to target {target} of kind {reloc:?}"
2420        );
2421        let label = MachLabel::from_block(BlockIndex::new(target));
2422        let offset = u32::try_from(offset).unwrap();
2423        match I::LabelUse::from_reloc(reloc, addend) {
2424            Some(label_use) => {
2425                self.buf.use_label_at_offset(offset, label, label_use);
2426                true
2427            }
2428            None => false,
2429        }
2430    }
2431
2432    fn force_veneers(&mut self) {
2433        self.force_veneers = ForceVeneers::Yes;
2434    }
2435
2436    fn write(&mut self, offset: u64, data: &[u8]) {
2437        self.buf.data[offset.try_into().unwrap()..][..data.len()].copy_from_slice(data);
2438    }
2439
2440    fn finish(&mut self, ctrl_plane: &mut ControlPlane) -> Vec<u8> {
2441        // Double-check all functions were pushed.
2442        assert_eq!(self.next_func, self.buf.label_offsets.len());
2443
2444        // Finish up any veneers, if necessary.
2445        self.buf
2446            .finish_emission_maybe_forcing_veneers(self.force_veneers, ctrl_plane);
2447
2448        // We don't need the data any more, so return it to the caller.
2449        mem::take(&mut self.buf.data).into_vec()
2450    }
2451}
2452
2453// We use an actual instruction definition to do tests, so we depend on the `arm64` feature here.
2454#[cfg(all(test, feature = "arm64"))]
2455mod test {
2456    use cranelift_entity::EntityRef as _;
2457
2458    use super::*;
2459    use crate::ir::UserExternalNameRef;
2460    use crate::isa::aarch64::inst::{BranchTarget, CondBrKind, EmitInfo, Inst};
2461    use crate::isa::aarch64::inst::{OperandSize, xreg};
2462    use crate::machinst::{MachInstEmit, MachInstEmitState};
2463    use crate::settings;
2464
2465    fn label(n: u32) -> MachLabel {
2466        MachLabel::from_block(BlockIndex::new(n as usize))
2467    }
2468    fn target(n: u32) -> BranchTarget {
2469        BranchTarget::Label(label(n))
2470    }
2471
2472    #[test]
2473    fn test_elide_jump_to_next() {
2474        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2475        let mut buf = MachBuffer::new();
2476        let mut state = <Inst as MachInstEmit>::State::default();
2477        let constants = Default::default();
2478
2479        buf.reserve_labels_for_blocks(2);
2480        buf.bind_label(label(0), state.ctrl_plane_mut());
2481        let inst = Inst::Jump { dest: target(1) };
2482        inst.emit(&mut buf, &info, &mut state);
2483        buf.bind_label(label(1), state.ctrl_plane_mut());
2484        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2485        assert_eq!(0, buf.total_size());
2486    }
2487
2488    #[test]
2489    fn test_elide_trivial_jump_blocks() {
2490        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2491        let mut buf = MachBuffer::new();
2492        let mut state = <Inst as MachInstEmit>::State::default();
2493        let constants = Default::default();
2494
2495        buf.reserve_labels_for_blocks(4);
2496
2497        buf.bind_label(label(0), state.ctrl_plane_mut());
2498        let inst = Inst::CondBr {
2499            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2500            taken: target(1),
2501            not_taken: target(2),
2502        };
2503        inst.emit(&mut buf, &info, &mut state);
2504
2505        buf.bind_label(label(1), state.ctrl_plane_mut());
2506        let inst = Inst::Jump { dest: target(3) };
2507        inst.emit(&mut buf, &info, &mut state);
2508
2509        buf.bind_label(label(2), state.ctrl_plane_mut());
2510        let inst = Inst::Jump { dest: target(3) };
2511        inst.emit(&mut buf, &info, &mut state);
2512
2513        buf.bind_label(label(3), state.ctrl_plane_mut());
2514
2515        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2516        assert_eq!(0, buf.total_size());
2517    }
2518
2519    #[test]
2520    fn test_flip_cond() {
2521        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2522        let mut buf = MachBuffer::new();
2523        let mut state = <Inst as MachInstEmit>::State::default();
2524        let constants = Default::default();
2525
2526        buf.reserve_labels_for_blocks(4);
2527
2528        buf.bind_label(label(0), state.ctrl_plane_mut());
2529        let inst = Inst::CondBr {
2530            kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2531            taken: target(1),
2532            not_taken: target(2),
2533        };
2534        inst.emit(&mut buf, &info, &mut state);
2535
2536        buf.bind_label(label(1), state.ctrl_plane_mut());
2537        let inst = Inst::Nop4;
2538        inst.emit(&mut buf, &info, &mut state);
2539
2540        buf.bind_label(label(2), state.ctrl_plane_mut());
2541        let inst = Inst::Udf {
2542            trap_code: TrapCode::STACK_OVERFLOW,
2543        };
2544        inst.emit(&mut buf, &info, &mut state);
2545
2546        buf.bind_label(label(3), state.ctrl_plane_mut());
2547
2548        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2549
2550        let mut buf2 = MachBuffer::new();
2551        let mut state = Default::default();
2552        let inst = Inst::TrapIf {
2553            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2554            trap_code: TrapCode::STACK_OVERFLOW,
2555        };
2556        inst.emit(&mut buf2, &info, &mut state);
2557        let inst = Inst::Nop4;
2558        inst.emit(&mut buf2, &info, &mut state);
2559
2560        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2561
2562        assert_eq!(buf.data, buf2.data);
2563    }
2564
2565    #[test]
2566    fn test_island() {
2567        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2568        let mut buf = MachBuffer::new();
2569        let mut state = <Inst as MachInstEmit>::State::default();
2570        let constants = Default::default();
2571
2572        buf.reserve_labels_for_blocks(4);
2573
2574        buf.bind_label(label(0), state.ctrl_plane_mut());
2575        let inst = Inst::CondBr {
2576            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2577            taken: target(2),
2578            not_taken: target(3),
2579        };
2580        inst.emit(&mut buf, &info, &mut state);
2581
2582        buf.bind_label(label(1), state.ctrl_plane_mut());
2583        while buf.cur_offset() < 2000000 {
2584            if buf.island_needed(0) {
2585                buf.emit_island(0, state.ctrl_plane_mut());
2586            }
2587            let inst = Inst::Nop4;
2588            inst.emit(&mut buf, &info, &mut state);
2589        }
2590
2591        buf.bind_label(label(2), state.ctrl_plane_mut());
2592        let inst = Inst::Nop4;
2593        inst.emit(&mut buf, &info, &mut state);
2594
2595        buf.bind_label(label(3), state.ctrl_plane_mut());
2596        let inst = Inst::Nop4;
2597        inst.emit(&mut buf, &info, &mut state);
2598
2599        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2600
2601        assert_eq!(2000000 + 8, buf.total_size());
2602
2603        let mut buf2 = MachBuffer::new();
2604        let mut state = Default::default();
2605        let inst = Inst::CondBr {
2606            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2607
2608            // This conditionally taken branch has a 19-bit constant, shifted
2609            // to the left by two, giving us a 21-bit range in total. Half of
2610            // this range positive so the we should be around 1 << 20 bytes
2611            // away for our jump target.
2612            //
2613            // There are two pending fixups by the time we reach this point,
2614            // one for this 19-bit jump and one for the unconditional 26-bit
2615            // jump below. A 19-bit veneer is 4 bytes large and the 26-bit
2616            // veneer is 20 bytes large, which means that pessimistically
2617            // assuming we'll need two veneers. Currently each veneer is
2618            // pessimistically assumed to be the maximal size which means we
2619            // need 40 bytes of extra space, meaning that the actual island
2620            // should come 40-bytes before the deadline.
2621            taken: BranchTarget::ResolvedOffset((1 << 20) - 20 - 20),
2622
2623            // This branch is in-range so no veneers should be needed, it should
2624            // go directly to the target.
2625            not_taken: BranchTarget::ResolvedOffset(2000000 + 4 - 4),
2626        };
2627        inst.emit(&mut buf2, &info, &mut state);
2628
2629        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2630
2631        assert_eq!(&buf.data[0..8], &buf2.data[..]);
2632    }
2633
2634    #[test]
2635    fn test_island_backward() {
2636        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2637        let mut buf = MachBuffer::new();
2638        let mut state = <Inst as MachInstEmit>::State::default();
2639        let constants = Default::default();
2640
2641        buf.reserve_labels_for_blocks(4);
2642
2643        buf.bind_label(label(0), state.ctrl_plane_mut());
2644        let inst = Inst::Nop4;
2645        inst.emit(&mut buf, &info, &mut state);
2646
2647        buf.bind_label(label(1), state.ctrl_plane_mut());
2648        let inst = Inst::Nop4;
2649        inst.emit(&mut buf, &info, &mut state);
2650
2651        buf.bind_label(label(2), state.ctrl_plane_mut());
2652        while buf.cur_offset() < 2000000 {
2653            let inst = Inst::Nop4;
2654            inst.emit(&mut buf, &info, &mut state);
2655        }
2656
2657        buf.bind_label(label(3), state.ctrl_plane_mut());
2658        let inst = Inst::CondBr {
2659            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2660            taken: target(0),
2661            not_taken: target(1),
2662        };
2663        inst.emit(&mut buf, &info, &mut state);
2664
2665        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2666
2667        assert_eq!(2000000 + 12, buf.total_size());
2668
2669        let mut buf2 = MachBuffer::new();
2670        let mut state = Default::default();
2671        let inst = Inst::CondBr {
2672            kind: CondBrKind::NotZero(xreg(0), OperandSize::Size64),
2673            taken: BranchTarget::ResolvedOffset(8),
2674            not_taken: BranchTarget::ResolvedOffset(4 - (2000000 + 4)),
2675        };
2676        inst.emit(&mut buf2, &info, &mut state);
2677        let inst = Inst::Jump {
2678            dest: BranchTarget::ResolvedOffset(-(2000000 + 8)),
2679        };
2680        inst.emit(&mut buf2, &info, &mut state);
2681
2682        let buf2 = buf2.finish(&constants, state.ctrl_plane_mut());
2683
2684        assert_eq!(&buf.data[2000000..], &buf2.data[..]);
2685    }
2686
2687    #[test]
2688    fn test_multiple_redirect() {
2689        // label0:
2690        //   cbz x0, label1
2691        //   b label2
2692        // label1:
2693        //   b label3
2694        // label2:
2695        //   nop
2696        //   nop
2697        //   b label0
2698        // label3:
2699        //   b label4
2700        // label4:
2701        //   b label5
2702        // label5:
2703        //   b label7
2704        // label6:
2705        //   nop
2706        // label7:
2707        //   ret
2708        //
2709        // -- should become:
2710        //
2711        // label0:
2712        //   cbz x0, label7
2713        // label2:
2714        //   nop
2715        //   nop
2716        //   b label0
2717        // label6:
2718        //   nop
2719        // label7:
2720        //   ret
2721
2722        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2723        let mut buf = MachBuffer::new();
2724        let mut state = <Inst as MachInstEmit>::State::default();
2725        let constants = Default::default();
2726
2727        buf.reserve_labels_for_blocks(8);
2728
2729        buf.bind_label(label(0), state.ctrl_plane_mut());
2730        let inst = Inst::CondBr {
2731            kind: CondBrKind::Zero(xreg(0), OperandSize::Size64),
2732            taken: target(1),
2733            not_taken: target(2),
2734        };
2735        inst.emit(&mut buf, &info, &mut state);
2736
2737        buf.bind_label(label(1), state.ctrl_plane_mut());
2738        let inst = Inst::Jump { dest: target(3) };
2739        inst.emit(&mut buf, &info, &mut state);
2740
2741        buf.bind_label(label(2), state.ctrl_plane_mut());
2742        let inst = Inst::Nop4;
2743        inst.emit(&mut buf, &info, &mut state);
2744        inst.emit(&mut buf, &info, &mut state);
2745        let inst = Inst::Jump { dest: target(0) };
2746        inst.emit(&mut buf, &info, &mut state);
2747
2748        buf.bind_label(label(3), state.ctrl_plane_mut());
2749        let inst = Inst::Jump { dest: target(4) };
2750        inst.emit(&mut buf, &info, &mut state);
2751
2752        buf.bind_label(label(4), state.ctrl_plane_mut());
2753        let inst = Inst::Jump { dest: target(5) };
2754        inst.emit(&mut buf, &info, &mut state);
2755
2756        buf.bind_label(label(5), state.ctrl_plane_mut());
2757        let inst = Inst::Jump { dest: target(7) };
2758        inst.emit(&mut buf, &info, &mut state);
2759
2760        buf.bind_label(label(6), state.ctrl_plane_mut());
2761        let inst = Inst::Nop4;
2762        inst.emit(&mut buf, &info, &mut state);
2763
2764        buf.bind_label(label(7), state.ctrl_plane_mut());
2765        let inst = Inst::Ret {};
2766        inst.emit(&mut buf, &info, &mut state);
2767
2768        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2769
2770        let golden_data = vec![
2771            0xa0, 0x00, 0x00, 0xb4, // cbz x0, 0x14
2772            0x1f, 0x20, 0x03, 0xd5, // nop
2773            0x1f, 0x20, 0x03, 0xd5, // nop
2774            0xfd, 0xff, 0xff, 0x17, // b 0
2775            0x1f, 0x20, 0x03, 0xd5, // nop
2776            0xc0, 0x03, 0x5f, 0xd6, // ret
2777        ];
2778
2779        assert_eq!(&golden_data[..], &buf.data[..]);
2780    }
2781
2782    #[test]
2783    fn test_handle_branch_cycle() {
2784        // label0:
2785        //   b label1
2786        // label1:
2787        //   b label2
2788        // label2:
2789        //   b label3
2790        // label3:
2791        //   b label4
2792        // label4:
2793        //   b label1  // note: not label0 (to make it interesting).
2794        //
2795        // -- should become:
2796        //
2797        // label0, label1, ..., label4:
2798        //   b label0
2799        let info = EmitInfo::new(settings::Flags::new(settings::builder()));
2800        let mut buf = MachBuffer::new();
2801        let mut state = <Inst as MachInstEmit>::State::default();
2802        let constants = Default::default();
2803
2804        buf.reserve_labels_for_blocks(5);
2805
2806        buf.bind_label(label(0), state.ctrl_plane_mut());
2807        let inst = Inst::Jump { dest: target(1) };
2808        inst.emit(&mut buf, &info, &mut state);
2809
2810        buf.bind_label(label(1), state.ctrl_plane_mut());
2811        let inst = Inst::Jump { dest: target(2) };
2812        inst.emit(&mut buf, &info, &mut state);
2813
2814        buf.bind_label(label(2), state.ctrl_plane_mut());
2815        let inst = Inst::Jump { dest: target(3) };
2816        inst.emit(&mut buf, &info, &mut state);
2817
2818        buf.bind_label(label(3), state.ctrl_plane_mut());
2819        let inst = Inst::Jump { dest: target(4) };
2820        inst.emit(&mut buf, &info, &mut state);
2821
2822        buf.bind_label(label(4), state.ctrl_plane_mut());
2823        let inst = Inst::Jump { dest: target(1) };
2824        inst.emit(&mut buf, &info, &mut state);
2825
2826        let buf = buf.finish(&constants, state.ctrl_plane_mut());
2827
2828        let golden_data = vec![
2829            0x00, 0x00, 0x00, 0x14, // b 0
2830        ];
2831
2832        assert_eq!(&golden_data[..], &buf.data[..]);
2833    }
2834
2835    #[test]
2836    fn metadata_records() {
2837        let mut buf = MachBuffer::<Inst>::new();
2838        let ctrl_plane = &mut Default::default();
2839        let constants = Default::default();
2840
2841        buf.reserve_labels_for_blocks(3);
2842
2843        buf.bind_label(label(0), ctrl_plane);
2844        buf.put1(1);
2845        buf.add_trap(TrapCode::HEAP_OUT_OF_BOUNDS);
2846        buf.put1(2);
2847        buf.add_trap(TrapCode::INTEGER_OVERFLOW);
2848        buf.add_trap(TrapCode::INTEGER_DIVISION_BY_ZERO);
2849        buf.add_try_call_site(
2850            Some(0x10),
2851            [
2852                MachExceptionHandler::Tag(ExceptionTag::new(42), label(2)),
2853                MachExceptionHandler::Default(label(1)),
2854            ]
2855            .into_iter(),
2856        );
2857        buf.add_reloc(
2858            Reloc::Abs4,
2859            &ExternalName::User(UserExternalNameRef::new(0)),
2860            0,
2861        );
2862        buf.put1(3);
2863        buf.add_reloc(
2864            Reloc::Abs8,
2865            &ExternalName::User(UserExternalNameRef::new(1)),
2866            1,
2867        );
2868        buf.put1(4);
2869        buf.bind_label(label(1), ctrl_plane);
2870        buf.put1(0xff);
2871        buf.bind_label(label(2), ctrl_plane);
2872        buf.put1(0xff);
2873
2874        let buf = buf.finish(&constants, ctrl_plane);
2875
2876        assert_eq!(buf.data(), &[1, 2, 3, 4, 0xff, 0xff]);
2877        assert_eq!(
2878            buf.traps()
2879                .iter()
2880                .map(|trap| (trap.offset, trap.code))
2881                .collect::<Vec<_>>(),
2882            vec![
2883                (1, TrapCode::HEAP_OUT_OF_BOUNDS),
2884                (2, TrapCode::INTEGER_OVERFLOW),
2885                (2, TrapCode::INTEGER_DIVISION_BY_ZERO)
2886            ]
2887        );
2888        let call_sites: Vec<_> = buf.call_sites().collect();
2889        assert_eq!(call_sites[0].ret_addr, 2);
2890        assert_eq!(call_sites[0].frame_offset, Some(0x10));
2891        assert_eq!(
2892            call_sites[0].exception_handlers,
2893            &[
2894                FinalizedMachExceptionHandler::Tag(ExceptionTag::new(42), 5),
2895                FinalizedMachExceptionHandler::Default(4)
2896            ],
2897        );
2898        assert_eq!(
2899            buf.relocs()
2900                .iter()
2901                .map(|reloc| (reloc.offset, reloc.kind))
2902                .collect::<Vec<_>>(),
2903            vec![(2, Reloc::Abs4), (3, Reloc::Abs8)]
2904        );
2905    }
2906}