cranelift_codegen/ir/
dfg.rs

1//! Data flow graph tracking Instructions, Values, and blocks.
2
3use crate::entity::{self, PrimaryMap, SecondaryMap};
4use crate::ir;
5use crate::ir::builder::ReplaceBuilder;
6use crate::ir::dynamic_type::{DynamicTypeData, DynamicTypes};
7use crate::ir::instructions::{CallInfo, InstructionData};
8use crate::ir::pcc::Fact;
9use crate::ir::user_stack_maps::{UserStackMapEntry, UserStackMapEntryVec};
10use crate::ir::{
11    types, Block, BlockCall, ConstantData, ConstantPool, DynamicType, ExtFuncData, FuncRef,
12    Immediate, Inst, JumpTables, RelSourceLoc, SigRef, Signature, Type, Value,
13    ValueLabelAssignments, ValueList, ValueListPool,
14};
15use crate::packed_option::ReservedValue;
16use crate::write::write_operands;
17use core::fmt;
18use core::iter;
19use core::mem;
20use core::ops::{Index, IndexMut};
21use core::u16;
22
23use alloc::collections::BTreeMap;
24#[cfg(feature = "enable-serde")]
25use serde_derive::{Deserialize, Serialize};
26use smallvec::SmallVec;
27
28/// Storage for instructions within the DFG.
29#[derive(Clone, PartialEq, Hash)]
30#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
31pub struct Insts(PrimaryMap<Inst, InstructionData>);
32
33/// Allow immutable access to instructions via indexing.
34impl Index<Inst> for Insts {
35    type Output = InstructionData;
36
37    fn index(&self, inst: Inst) -> &InstructionData {
38        self.0.index(inst)
39    }
40}
41
42/// Allow mutable access to instructions via indexing.
43impl IndexMut<Inst> for Insts {
44    fn index_mut(&mut self, inst: Inst) -> &mut InstructionData {
45        self.0.index_mut(inst)
46    }
47}
48
49/// Storage for basic blocks within the DFG.
50#[derive(Clone, PartialEq, Hash)]
51#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
52pub struct Blocks(PrimaryMap<Block, BlockData>);
53
54impl Blocks {
55    /// Create a new basic block.
56    pub fn add(&mut self) -> Block {
57        self.0.push(BlockData::new())
58    }
59
60    /// Get the total number of basic blocks created in this function, whether they are
61    /// currently inserted in the layout or not.
62    ///
63    /// This is intended for use with `SecondaryMap::with_capacity`.
64    pub fn len(&self) -> usize {
65        self.0.len()
66    }
67
68    /// Returns `true` if the given block reference is valid.
69    pub fn is_valid(&self, block: Block) -> bool {
70        self.0.is_valid(block)
71    }
72}
73
74impl Index<Block> for Blocks {
75    type Output = BlockData;
76
77    fn index(&self, block: Block) -> &BlockData {
78        &self.0[block]
79    }
80}
81
82impl IndexMut<Block> for Blocks {
83    fn index_mut(&mut self, block: Block) -> &mut BlockData {
84        &mut self.0[block]
85    }
86}
87
88/// A data flow graph defines all instructions and basic blocks in a function as well as
89/// the data flow dependencies between them. The DFG also tracks values which can be either
90/// instruction results or block parameters.
91///
92/// The layout of blocks in the function and of instructions in each block is recorded by the
93/// `Layout` data structure which forms the other half of the function representation.
94///
95#[derive(Clone, PartialEq, Hash)]
96#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
97pub struct DataFlowGraph {
98    /// Data about all of the instructions in the function, including opcodes and operands.
99    /// The instructions in this map are not in program order. That is tracked by `Layout`, along
100    /// with the block containing each instruction.
101    pub insts: Insts,
102
103    /// List of result values for each instruction.
104    ///
105    /// This map gets resized automatically by `make_inst()` so it is always in sync with the
106    /// primary `insts` map.
107    results: SecondaryMap<Inst, ValueList>,
108
109    /// User-defined stack maps.
110    ///
111    /// Not to be confused with the stack maps that `regalloc2` produces. These
112    /// are defined by the user in `cranelift-frontend`. These will eventually
113    /// replace the stack maps support in `regalloc2`, but in the name of
114    /// incrementalism and avoiding gigantic PRs that completely overhaul
115    /// Cranelift and Wasmtime at the same time, we are allowing them to live in
116    /// parallel for the time being.
117    user_stack_maps: alloc::collections::BTreeMap<Inst, UserStackMapEntryVec>,
118
119    /// basic blocks in the function and their parameters.
120    ///
121    /// This map is not in program order. That is handled by `Layout`, and so is the sequence of
122    /// instructions contained in each block.
123    pub blocks: Blocks,
124
125    /// Dynamic types created.
126    pub dynamic_types: DynamicTypes,
127
128    /// Memory pool of value lists.
129    ///
130    /// The `ValueList` references into this pool appear in many places:
131    ///
132    /// - Instructions in `insts` that don't have room for their entire argument list inline.
133    /// - Instruction result values in `results`.
134    /// - block parameters in `blocks`.
135    pub value_lists: ValueListPool,
136
137    /// Primary value table with entries for all values.
138    values: PrimaryMap<Value, ValueDataPacked>,
139
140    /// Facts: proof-carrying-code assertions about values.
141    pub facts: SecondaryMap<Value, Option<Fact>>,
142
143    /// Function signature table. These signatures are referenced by indirect call instructions as
144    /// well as the external function references.
145    pub signatures: PrimaryMap<SigRef, Signature>,
146
147    /// External function references. These are functions that can be called directly.
148    pub ext_funcs: PrimaryMap<FuncRef, ExtFuncData>,
149
150    /// Saves Value labels.
151    pub values_labels: Option<BTreeMap<Value, ValueLabelAssignments>>,
152
153    /// Constants used within the function.
154    pub constants: ConstantPool,
155
156    /// Stores large immediates that otherwise will not fit on InstructionData.
157    pub immediates: PrimaryMap<Immediate, ConstantData>,
158
159    /// Jump tables used in this function.
160    pub jump_tables: JumpTables,
161}
162
163impl DataFlowGraph {
164    /// Create a new empty `DataFlowGraph`.
165    pub fn new() -> Self {
166        Self {
167            insts: Insts(PrimaryMap::new()),
168            results: SecondaryMap::new(),
169            user_stack_maps: alloc::collections::BTreeMap::new(),
170            blocks: Blocks(PrimaryMap::new()),
171            dynamic_types: DynamicTypes::new(),
172            value_lists: ValueListPool::new(),
173            values: PrimaryMap::new(),
174            facts: SecondaryMap::new(),
175            signatures: PrimaryMap::new(),
176            ext_funcs: PrimaryMap::new(),
177            values_labels: None,
178            constants: ConstantPool::new(),
179            immediates: PrimaryMap::new(),
180            jump_tables: JumpTables::new(),
181        }
182    }
183
184    /// Clear everything.
185    pub fn clear(&mut self) {
186        self.insts.0.clear();
187        self.results.clear();
188        self.user_stack_maps.clear();
189        self.blocks.0.clear();
190        self.dynamic_types.clear();
191        self.value_lists.clear();
192        self.values.clear();
193        self.signatures.clear();
194        self.ext_funcs.clear();
195        self.values_labels = None;
196        self.constants.clear();
197        self.immediates.clear();
198        self.jump_tables.clear();
199        self.facts.clear();
200    }
201
202    /// Get the total number of instructions created in this function, whether they are currently
203    /// inserted in the layout or not.
204    ///
205    /// This is intended for use with `SecondaryMap::with_capacity`.
206    pub fn num_insts(&self) -> usize {
207        self.insts.0.len()
208    }
209
210    /// Returns `true` if the given instruction reference is valid.
211    pub fn inst_is_valid(&self, inst: Inst) -> bool {
212        self.insts.0.is_valid(inst)
213    }
214
215    /// Get the total number of basic blocks created in this function, whether they are
216    /// currently inserted in the layout or not.
217    ///
218    /// This is intended for use with `SecondaryMap::with_capacity`.
219    pub fn num_blocks(&self) -> usize {
220        self.blocks.len()
221    }
222
223    /// Returns `true` if the given block reference is valid.
224    pub fn block_is_valid(&self, block: Block) -> bool {
225        self.blocks.is_valid(block)
226    }
227
228    /// Make a BlockCall, bundling together the block and its arguments.
229    pub fn block_call(&mut self, block: Block, args: &[Value]) -> BlockCall {
230        BlockCall::new(block, args, &mut self.value_lists)
231    }
232
233    /// Get the total number of values.
234    pub fn num_values(&self) -> usize {
235        self.values.len()
236    }
237
238    /// Get an iterator over all values and their definitions.
239    pub fn values_and_defs(&self) -> impl Iterator<Item = (Value, ValueDef)> + '_ {
240        self.values().map(|value| (value, self.value_def(value)))
241    }
242
243    /// Starts collection of debug information.
244    pub fn collect_debug_info(&mut self) {
245        if self.values_labels.is_none() {
246            self.values_labels = Some(Default::default());
247        }
248    }
249
250    /// Inserts a `ValueLabelAssignments::Alias` for `to_alias` if debug info
251    /// collection is enabled.
252    pub fn add_value_label_alias(&mut self, to_alias: Value, from: RelSourceLoc, value: Value) {
253        if let Some(values_labels) = self.values_labels.as_mut() {
254            values_labels.insert(to_alias, ir::ValueLabelAssignments::Alias { from, value });
255        }
256    }
257}
258
259/// Resolve value aliases.
260///
261/// Find the original SSA value that `value` aliases, or None if an
262/// alias cycle is detected.
263fn maybe_resolve_aliases(
264    values: &PrimaryMap<Value, ValueDataPacked>,
265    value: Value,
266) -> Option<Value> {
267    let mut v = value;
268
269    // Note that values may be empty here.
270    for _ in 0..=values.len() {
271        if let ValueData::Alias { original, .. } = ValueData::from(values[v]) {
272            v = original;
273        } else {
274            return Some(v);
275        }
276    }
277
278    None
279}
280
281/// Resolve value aliases.
282///
283/// Find the original SSA value that `value` aliases.
284fn resolve_aliases(values: &PrimaryMap<Value, ValueDataPacked>, value: Value) -> Value {
285    if let Some(v) = maybe_resolve_aliases(values, value) {
286        v
287    } else {
288        panic!("Value alias loop detected for {}", value);
289    }
290}
291
292/// Iterator over all Values in a DFG.
293pub struct Values<'a> {
294    inner: entity::Iter<'a, Value, ValueDataPacked>,
295}
296
297/// Check for non-values.
298fn valid_valuedata(data: ValueDataPacked) -> bool {
299    let data = ValueData::from(data);
300    if let ValueData::Alias {
301        ty: types::INVALID,
302        original,
303    } = ValueData::from(data)
304    {
305        if original == Value::reserved_value() {
306            return false;
307        }
308    }
309    true
310}
311
312impl<'a> Iterator for Values<'a> {
313    type Item = Value;
314
315    fn next(&mut self) -> Option<Self::Item> {
316        self.inner
317            .by_ref()
318            .find(|kv| valid_valuedata(*kv.1))
319            .map(|kv| kv.0)
320    }
321}
322
323/// Handling values.
324///
325/// Values are either block parameters or instruction results.
326impl DataFlowGraph {
327    /// Allocate an extended value entry.
328    fn make_value(&mut self, data: ValueData) -> Value {
329        self.values.push(data.into())
330    }
331
332    /// Get an iterator over all values.
333    pub fn values<'a>(&'a self) -> Values {
334        Values {
335            inner: self.values.iter(),
336        }
337    }
338
339    /// Check if a value reference is valid.
340    pub fn value_is_valid(&self, v: Value) -> bool {
341        self.values.is_valid(v)
342    }
343
344    /// Check whether a value is valid and not an alias.
345    pub fn value_is_real(&self, value: Value) -> bool {
346        // Deleted or unused values are also stored as aliases so this excludes
347        // those as well.
348        self.value_is_valid(value) && !matches!(self.values[value].into(), ValueData::Alias { .. })
349    }
350
351    /// Get the type of a value.
352    pub fn value_type(&self, v: Value) -> Type {
353        self.values[v].ty()
354    }
355
356    /// Get the definition of a value.
357    ///
358    /// This is either the instruction that defined it or the Block that has the value as an
359    /// parameter.
360    pub fn value_def(&self, v: Value) -> ValueDef {
361        match ValueData::from(self.values[v]) {
362            ValueData::Inst { inst, num, .. } => ValueDef::Result(inst, num as usize),
363            ValueData::Param { block, num, .. } => ValueDef::Param(block, num as usize),
364            ValueData::Alias { original, .. } => {
365                // Make sure we only recurse one level. `resolve_aliases` has safeguards to
366                // detect alias loops without overrunning the stack.
367                self.value_def(self.resolve_aliases(original))
368            }
369            ValueData::Union { x, y, .. } => ValueDef::Union(x, y),
370        }
371    }
372
373    /// Determine if `v` is an attached instruction result / block parameter.
374    ///
375    /// An attached value can't be attached to something else without first being detached.
376    ///
377    /// Value aliases are not considered to be attached to anything. Use `resolve_aliases()` to
378    /// determine if the original aliased value is attached.
379    pub fn value_is_attached(&self, v: Value) -> bool {
380        use self::ValueData::*;
381        match ValueData::from(self.values[v]) {
382            Inst { inst, num, .. } => Some(&v) == self.inst_results(inst).get(num as usize),
383            Param { block, num, .. } => Some(&v) == self.block_params(block).get(num as usize),
384            Alias { .. } => false,
385            Union { .. } => false,
386        }
387    }
388
389    /// Resolve value aliases.
390    ///
391    /// Find the original SSA value that `value` aliases.
392    pub fn resolve_aliases(&self, value: Value) -> Value {
393        resolve_aliases(&self.values, value)
394    }
395
396    /// Replace all uses of value aliases with their resolved values, and delete
397    /// the aliases.
398    pub fn resolve_all_aliases(&mut self) {
399        let invalid_value = ValueDataPacked::from(ValueData::Alias {
400            ty: types::INVALID,
401            original: Value::reserved_value(),
402        });
403
404        // Rewrite each chain of aliases. Update every alias along the chain
405        // into an alias directly to the final value. Due to updating every
406        // alias that it looks at, this loop runs in time linear in the number
407        // of values.
408        for mut src in self.values.keys() {
409            let value_data = self.values[src];
410            if value_data == invalid_value {
411                continue;
412            }
413            if let ValueData::Alias { mut original, .. } = value_data.into() {
414                // We don't use the type after this, we just need some place to
415                // store the resolved aliases temporarily.
416                let resolved = ValueDataPacked::from(ValueData::Alias {
417                    ty: types::INVALID,
418                    original: resolve_aliases(&self.values, original),
419                });
420                // Walk the chain again, splatting the new alias everywhere.
421                // resolve_aliases panics if there's an alias cycle, so we don't
422                // need to guard against cycles here.
423                loop {
424                    self.values[src] = resolved;
425                    src = original;
426                    if let ValueData::Alias { original: next, .. } = self.values[src].into() {
427                        original = next;
428                    } else {
429                        break;
430                    }
431                }
432            }
433        }
434
435        // Now aliases don't point to other aliases, so we can replace any use
436        // of an alias with the final value in constant time.
437
438        // Rewrite InstructionData in `self.insts`.
439        for inst in self.insts.0.values_mut() {
440            inst.map_values(&mut self.value_lists, &mut self.jump_tables, |arg| {
441                if let ValueData::Alias { original, .. } = self.values[arg].into() {
442                    original
443                } else {
444                    arg
445                }
446            });
447        }
448
449        // - `results` and block-params in `blocks` are not aliases, by
450        //   definition.
451        // - `dynamic_types` has no values.
452        // - `value_lists` can only be accessed via references from elsewhere.
453        // - `values` only has value references in aliases (which we've
454        //   removed), and unions (but the egraph pass ensures there are no
455        //   aliases before creating unions).
456
457        // Merge `facts` from any alias onto the aliased value. Note that if
458        // there was a chain of aliases, at this point every alias that was in
459        // the chain points to the same final value, so their facts will all be
460        // merged together.
461        for value in self.facts.keys() {
462            if let ValueData::Alias { original, .. } = self.values[value].into() {
463                if let Some(new_fact) = self.facts[value].take() {
464                    match &mut self.facts[original] {
465                        Some(old_fact) => *old_fact = Fact::intersect(old_fact, &new_fact),
466                        old_fact => *old_fact = Some(new_fact),
467                    }
468                }
469            }
470        }
471
472        // - `signatures` and `ext_funcs` have no values.
473
474        if let Some(values_labels) = &mut self.values_labels {
475            // Debug info is best-effort. If any is attached to value aliases,
476            // just discard it.
477            values_labels.retain(|&k, _| !matches!(self.values[k].into(), ValueData::Alias { .. }));
478
479            // If debug-info says a value should have the same labels as another
480            // value, then make sure that target is not a value alias.
481            for value_label in values_labels.values_mut() {
482                if let ValueLabelAssignments::Alias { value, .. } = value_label {
483                    if let ValueData::Alias { original, .. } = self.values[*value].into() {
484                        *value = original;
485                    }
486                }
487            }
488        }
489
490        // - `constants` and `immediates` have no values.
491        // - `jump_tables` is updated together with instruction-data above.
492
493        // Delete all aliases now that there are no uses left.
494        for value in self.values.values_mut() {
495            if let ValueData::Alias { .. } = ValueData::from(*value) {
496                *value = invalid_value;
497            }
498        }
499    }
500
501    /// Turn a value into an alias of another.
502    ///
503    /// Change the `dest` value to behave as an alias of `src`. This means that all uses of `dest`
504    /// will behave as if they used that value `src`.
505    ///
506    /// The `dest` value can't be attached to an instruction or block.
507    pub fn change_to_alias(&mut self, dest: Value, src: Value) {
508        debug_assert!(!self.value_is_attached(dest));
509        // Try to create short alias chains by finding the original source value.
510        // This also avoids the creation of loops.
511        let original = self.resolve_aliases(src);
512        debug_assert_ne!(
513            dest, original,
514            "Aliasing {} to {} would create a loop",
515            dest, src
516        );
517        let ty = self.value_type(original);
518        debug_assert_eq!(
519            self.value_type(dest),
520            ty,
521            "Aliasing {} to {} would change its type {} to {}",
522            dest,
523            src,
524            self.value_type(dest),
525            ty
526        );
527        debug_assert_ne!(ty, types::INVALID);
528
529        self.values[dest] = ValueData::Alias { ty, original }.into();
530    }
531
532    /// Replace the results of one instruction with aliases to the results of another.
533    ///
534    /// Change all the results of `dest_inst` to behave as aliases of
535    /// corresponding results of `src_inst`, as if calling change_to_alias for
536    /// each.
537    ///
538    /// After calling this instruction, `dest_inst` will have had its results
539    /// cleared, so it likely needs to be removed from the graph.
540    ///
541    pub fn replace_with_aliases(&mut self, dest_inst: Inst, original_inst: Inst) {
542        debug_assert_ne!(
543            dest_inst, original_inst,
544            "Replacing {} with itself would create a loop",
545            dest_inst
546        );
547
548        let dest_results = self.results[dest_inst].as_slice(&self.value_lists);
549        let original_results = self.results[original_inst].as_slice(&self.value_lists);
550
551        debug_assert_eq!(
552            dest_results.len(),
553            original_results.len(),
554            "Replacing {} with {} would produce a different number of results.",
555            dest_inst,
556            original_inst
557        );
558
559        for (&dest, &original) in dest_results.iter().zip(original_results) {
560            let ty = self.value_type(original);
561            debug_assert_eq!(
562                self.value_type(dest),
563                ty,
564                "Aliasing {} to {} would change its type {} to {}",
565                dest,
566                original,
567                self.value_type(dest),
568                ty
569            );
570            debug_assert_ne!(ty, types::INVALID);
571
572            self.values[dest] = ValueData::Alias { ty, original }.into();
573        }
574
575        self.clear_results(dest_inst);
576    }
577
578    /// Get the stack map entries associated with the given instruction.
579    pub fn user_stack_map_entries(&self, inst: Inst) -> Option<&[UserStackMapEntry]> {
580        self.user_stack_maps.get(&inst).map(|es| &**es)
581    }
582
583    /// Append a new stack map entry for the given call instruction.
584    ///
585    /// # Panics
586    ///
587    /// Panics if the given instruction is not a (non-tail) call instruction.
588    pub fn append_user_stack_map_entry(&mut self, inst: Inst, entry: UserStackMapEntry) {
589        let opcode = self.insts[inst].opcode();
590        assert!(opcode.is_safepoint());
591        self.user_stack_maps.entry(inst).or_default().push(entry);
592    }
593}
594
595/// Where did a value come from?
596#[derive(Clone, Copy, Debug, PartialEq, Eq)]
597pub enum ValueDef {
598    /// Value is the n'th result of an instruction.
599    Result(Inst, usize),
600    /// Value is the n'th parameter to a block.
601    Param(Block, usize),
602    /// Value is a union of two other values.
603    Union(Value, Value),
604}
605
606impl ValueDef {
607    /// Unwrap the instruction where the value was defined, or panic.
608    pub fn unwrap_inst(&self) -> Inst {
609        self.inst().expect("Value is not an instruction result")
610    }
611
612    /// Get the instruction where the value was defined, if any.
613    pub fn inst(&self) -> Option<Inst> {
614        match *self {
615            Self::Result(inst, _) => Some(inst),
616            _ => None,
617        }
618    }
619
620    /// Unwrap the block there the parameter is defined, or panic.
621    pub fn unwrap_block(&self) -> Block {
622        match *self {
623            Self::Param(block, _) => block,
624            _ => panic!("Value is not a block parameter"),
625        }
626    }
627
628    /// Get the number component of this definition.
629    ///
630    /// When multiple values are defined at the same program point, this indicates the index of
631    /// this value.
632    pub fn num(self) -> usize {
633        match self {
634            Self::Result(_, n) | Self::Param(_, n) => n,
635            Self::Union(_, _) => 0,
636        }
637    }
638}
639
640/// Internal table storage for extended values.
641#[derive(Clone, Debug, PartialEq, Hash)]
642#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
643enum ValueData {
644    /// Value is defined by an instruction.
645    Inst { ty: Type, num: u16, inst: Inst },
646
647    /// Value is a block parameter.
648    Param { ty: Type, num: u16, block: Block },
649
650    /// Value is an alias of another value.
651    /// An alias value can't be linked as an instruction result or block parameter. It is used as a
652    /// placeholder when the original instruction or block has been rewritten or modified.
653    Alias { ty: Type, original: Value },
654
655    /// Union is a "fork" in representation: the value can be
656    /// represented as either of the values named here. This is used
657    /// for aegraph (acyclic egraph) representation in the DFG.
658    Union { ty: Type, x: Value, y: Value },
659}
660
661/// Bit-packed version of ValueData, for efficiency.
662///
663/// Layout:
664///
665/// ```plain
666///        | tag:2 |  type:14        |    x:24       | y:24          |
667///
668/// Inst       00     ty               inst output     inst index
669/// Param      01     ty               blockparam num  block index
670/// Alias      10     ty               0               value index
671/// Union      11     ty               first value     second value
672/// ```
673#[derive(Clone, Copy, Debug, PartialEq, Hash)]
674#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
675struct ValueDataPacked(u64);
676
677/// Encodes a value in 0..2^32 into 0..2^n, where n is less than 32
678/// (and is implied by `mask`), by translating 2^32-1 (0xffffffff)
679/// into 2^n-1 and panic'ing on 2^n..2^32-1.
680fn encode_narrow_field(x: u32, bits: u8) -> u32 {
681    let max = (1 << bits) - 1;
682    if x == 0xffff_ffff {
683        max
684    } else {
685        debug_assert!(
686            x < max,
687            "{x} does not fit into {bits} bits (must be less than {max} to \
688             allow for a 0xffffffff sentinel)"
689        );
690        x
691    }
692}
693
694/// The inverse of the above `encode_narrow_field`: unpacks 2^n-1 into
695/// 2^32-1.
696fn decode_narrow_field(x: u32, bits: u8) -> u32 {
697    if x == (1 << bits) - 1 {
698        0xffff_ffff
699    } else {
700        x
701    }
702}
703
704impl ValueDataPacked {
705    const Y_SHIFT: u8 = 0;
706    const Y_BITS: u8 = 24;
707    const X_SHIFT: u8 = Self::Y_SHIFT + Self::Y_BITS;
708    const X_BITS: u8 = 24;
709    const TYPE_SHIFT: u8 = Self::X_SHIFT + Self::X_BITS;
710    const TYPE_BITS: u8 = 14;
711    const TAG_SHIFT: u8 = Self::TYPE_SHIFT + Self::TYPE_BITS;
712    const TAG_BITS: u8 = 2;
713
714    const TAG_INST: u64 = 0;
715    const TAG_PARAM: u64 = 1;
716    const TAG_ALIAS: u64 = 2;
717    const TAG_UNION: u64 = 3;
718
719    fn make(tag: u64, ty: Type, x: u32, y: u32) -> ValueDataPacked {
720        debug_assert!(tag < (1 << Self::TAG_BITS));
721        debug_assert!(ty.repr() < (1 << Self::TYPE_BITS));
722
723        let x = encode_narrow_field(x, Self::X_BITS);
724        let y = encode_narrow_field(y, Self::Y_BITS);
725
726        ValueDataPacked(
727            (tag << Self::TAG_SHIFT)
728                | ((ty.repr() as u64) << Self::TYPE_SHIFT)
729                | ((x as u64) << Self::X_SHIFT)
730                | ((y as u64) << Self::Y_SHIFT),
731        )
732    }
733
734    #[inline(always)]
735    fn field(self, shift: u8, bits: u8) -> u64 {
736        (self.0 >> shift) & ((1 << bits) - 1)
737    }
738
739    #[inline(always)]
740    fn ty(self) -> Type {
741        let ty = self.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS) as u16;
742        Type::from_repr(ty)
743    }
744
745    #[inline(always)]
746    fn set_type(&mut self, ty: Type) {
747        self.0 &= !(((1 << Self::TYPE_BITS) - 1) << Self::TYPE_SHIFT);
748        self.0 |= (ty.repr() as u64) << Self::TYPE_SHIFT;
749    }
750}
751
752impl From<ValueData> for ValueDataPacked {
753    fn from(data: ValueData) -> Self {
754        match data {
755            ValueData::Inst { ty, num, inst } => {
756                Self::make(Self::TAG_INST, ty, num.into(), inst.as_bits())
757            }
758            ValueData::Param { ty, num, block } => {
759                Self::make(Self::TAG_PARAM, ty, num.into(), block.as_bits())
760            }
761            ValueData::Alias { ty, original } => {
762                Self::make(Self::TAG_ALIAS, ty, 0, original.as_bits())
763            }
764            ValueData::Union { ty, x, y } => {
765                Self::make(Self::TAG_UNION, ty, x.as_bits(), y.as_bits())
766            }
767        }
768    }
769}
770
771impl From<ValueDataPacked> for ValueData {
772    fn from(data: ValueDataPacked) -> Self {
773        let tag = data.field(ValueDataPacked::TAG_SHIFT, ValueDataPacked::TAG_BITS);
774        let ty = u16::try_from(data.field(ValueDataPacked::TYPE_SHIFT, ValueDataPacked::TYPE_BITS))
775            .expect("Mask should ensure result fits in a u16");
776        let x = u32::try_from(data.field(ValueDataPacked::X_SHIFT, ValueDataPacked::X_BITS))
777            .expect("Mask should ensure result fits in a u32");
778        let y = u32::try_from(data.field(ValueDataPacked::Y_SHIFT, ValueDataPacked::Y_BITS))
779            .expect("Mask should ensure result fits in a u32");
780
781        let ty = Type::from_repr(ty);
782        match tag {
783            ValueDataPacked::TAG_INST => ValueData::Inst {
784                ty,
785                num: u16::try_from(x).expect("Inst result num should fit in u16"),
786                inst: Inst::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
787            },
788            ValueDataPacked::TAG_PARAM => ValueData::Param {
789                ty,
790                num: u16::try_from(x).expect("Blockparam index should fit in u16"),
791                block: Block::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
792            },
793            ValueDataPacked::TAG_ALIAS => ValueData::Alias {
794                ty,
795                original: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
796            },
797            ValueDataPacked::TAG_UNION => ValueData::Union {
798                ty,
799                x: Value::from_bits(decode_narrow_field(x, ValueDataPacked::X_BITS)),
800                y: Value::from_bits(decode_narrow_field(y, ValueDataPacked::Y_BITS)),
801            },
802            _ => panic!("Invalid tag {} in ValueDataPacked 0x{:x}", tag, data.0),
803        }
804    }
805}
806
807/// Instructions.
808///
809impl DataFlowGraph {
810    /// Create a new instruction.
811    ///
812    /// The type of the first result is indicated by `data.ty`. If the
813    /// instruction produces multiple results, also call
814    /// `make_inst_results` to allocate value table entries. (It is
815    /// always safe to call `make_inst_results`, regardless of how
816    /// many results the instruction has.)
817    pub fn make_inst(&mut self, data: InstructionData) -> Inst {
818        let n = self.num_insts() + 1;
819        self.results.resize(n);
820        self.insts.0.push(data)
821    }
822
823    /// Declares a dynamic vector type
824    pub fn make_dynamic_ty(&mut self, data: DynamicTypeData) -> DynamicType {
825        self.dynamic_types.push(data)
826    }
827
828    /// Returns an object that displays `inst`.
829    pub fn display_inst<'a>(&'a self, inst: Inst) -> DisplayInst<'a> {
830        DisplayInst(self, inst)
831    }
832
833    /// Returns an object that displays the given `value`'s defining instruction.
834    ///
835    /// Panics if the value is not defined by an instruction (i.e. it is a basic
836    /// block argument).
837    pub fn display_value_inst(&self, value: Value) -> DisplayInst<'_> {
838        match self.value_def(value) {
839            ir::ValueDef::Result(inst, _) => self.display_inst(inst),
840            ir::ValueDef::Param(_, _) => panic!("value is not defined by an instruction"),
841            ir::ValueDef::Union(_, _) => panic!("value is a union of two other values"),
842        }
843    }
844
845    /// Construct a read-only visitor context for the values of this instruction.
846    pub fn inst_values<'dfg>(
847        &'dfg self,
848        inst: Inst,
849    ) -> impl DoubleEndedIterator<Item = Value> + 'dfg {
850        self.inst_args(inst)
851            .iter()
852            .chain(
853                self.insts[inst]
854                    .branch_destination(&self.jump_tables)
855                    .into_iter()
856                    .flat_map(|branch| branch.args_slice(&self.value_lists).iter()),
857            )
858            .copied()
859    }
860
861    /// Map a function over the values of the instruction.
862    pub fn map_inst_values<F>(&mut self, inst: Inst, body: F)
863    where
864        F: FnMut(Value) -> Value,
865    {
866        self.insts[inst].map_values(&mut self.value_lists, &mut self.jump_tables, body);
867    }
868
869    /// Overwrite the instruction's value references with values from the iterator.
870    /// NOTE: the iterator provided is expected to yield at least as many values as the instruction
871    /// currently has.
872    pub fn overwrite_inst_values<I>(&mut self, inst: Inst, mut values: I)
873    where
874        I: Iterator<Item = Value>,
875    {
876        self.insts[inst].map_values(&mut self.value_lists, &mut self.jump_tables, |_| {
877            values.next().unwrap()
878        });
879    }
880
881    /// Get all value arguments on `inst` as a slice.
882    pub fn inst_args(&self, inst: Inst) -> &[Value] {
883        self.insts[inst].arguments(&self.value_lists)
884    }
885
886    /// Get all value arguments on `inst` as a mutable slice.
887    pub fn inst_args_mut(&mut self, inst: Inst) -> &mut [Value] {
888        self.insts[inst].arguments_mut(&mut self.value_lists)
889    }
890
891    /// Get the fixed value arguments on `inst` as a slice.
892    pub fn inst_fixed_args(&self, inst: Inst) -> &[Value] {
893        let num_fixed_args = self.insts[inst]
894            .opcode()
895            .constraints()
896            .num_fixed_value_arguments();
897        &self.inst_args(inst)[..num_fixed_args]
898    }
899
900    /// Get the fixed value arguments on `inst` as a mutable slice.
901    pub fn inst_fixed_args_mut(&mut self, inst: Inst) -> &mut [Value] {
902        let num_fixed_args = self.insts[inst]
903            .opcode()
904            .constraints()
905            .num_fixed_value_arguments();
906        &mut self.inst_args_mut(inst)[..num_fixed_args]
907    }
908
909    /// Get the variable value arguments on `inst` as a slice.
910    pub fn inst_variable_args(&self, inst: Inst) -> &[Value] {
911        let num_fixed_args = self.insts[inst]
912            .opcode()
913            .constraints()
914            .num_fixed_value_arguments();
915        &self.inst_args(inst)[num_fixed_args..]
916    }
917
918    /// Get the variable value arguments on `inst` as a mutable slice.
919    pub fn inst_variable_args_mut(&mut self, inst: Inst) -> &mut [Value] {
920        let num_fixed_args = self.insts[inst]
921            .opcode()
922            .constraints()
923            .num_fixed_value_arguments();
924        &mut self.inst_args_mut(inst)[num_fixed_args..]
925    }
926
927    /// Create result values for an instruction that produces multiple results.
928    ///
929    /// Instructions that produce no result values only need to be created with `make_inst`,
930    /// otherwise call `make_inst_results` to allocate value table entries for the results.
931    ///
932    /// The result value types are determined from the instruction's value type constraints and the
933    /// provided `ctrl_typevar` type for polymorphic instructions. For non-polymorphic
934    /// instructions, `ctrl_typevar` is ignored, and `INVALID` can be used.
935    ///
936    /// The type of the first result value is also set, even if it was already set in the
937    /// `InstructionData` passed to `make_inst`. If this function is called with a single-result
938    /// instruction, that is the only effect.
939    pub fn make_inst_results(&mut self, inst: Inst, ctrl_typevar: Type) -> usize {
940        self.make_inst_results_reusing(inst, ctrl_typevar, iter::empty())
941    }
942
943    /// Create result values for `inst`, reusing the provided detached values.
944    ///
945    /// Create a new set of result values for `inst` using `ctrl_typevar` to determine the result
946    /// types. Any values provided by `reuse` will be reused. When `reuse` is exhausted or when it
947    /// produces `None`, a new value is created.
948    pub fn make_inst_results_reusing<I>(
949        &mut self,
950        inst: Inst,
951        ctrl_typevar: Type,
952        reuse: I,
953    ) -> usize
954    where
955        I: Iterator<Item = Option<Value>>,
956    {
957        self.clear_results(inst);
958
959        let mut reuse = reuse.fuse();
960        let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
961
962        for (expected, &ty) in result_tys.iter().enumerate() {
963            let num = u16::try_from(expected).expect("Result value index should fit in u16");
964            let value_data = ValueData::Inst { ty, num, inst };
965            let v = if let Some(Some(v)) = reuse.next() {
966                debug_assert_eq!(self.value_type(v), ty, "Reused {} is wrong type", ty);
967                debug_assert!(!self.value_is_attached(v));
968                self.values[v] = value_data.into();
969                v
970            } else {
971                self.make_value(value_data)
972            };
973            let actual = self.results[inst].push(v, &mut self.value_lists);
974            debug_assert_eq!(expected, actual);
975        }
976
977        result_tys.len()
978    }
979
980    /// Create a `ReplaceBuilder` that will replace `inst` with a new instruction in place.
981    pub fn replace(&mut self, inst: Inst) -> ReplaceBuilder {
982        ReplaceBuilder::new(self, inst)
983    }
984
985    /// Clear the list of result values from `inst`.
986    ///
987    /// This leaves `inst` without any result values. New result values can be created by calling
988    /// `make_inst_results` or by using a `replace(inst)` builder.
989    pub fn clear_results(&mut self, inst: Inst) {
990        self.results[inst].clear(&mut self.value_lists)
991    }
992
993    /// Replace an instruction result with a new value of type `new_type`.
994    ///
995    /// The `old_value` must be an attached instruction result.
996    ///
997    /// The old value is left detached, so it should probably be changed into something else.
998    ///
999    /// Returns the new value.
1000    pub fn replace_result(&mut self, old_value: Value, new_type: Type) -> Value {
1001        let (num, inst) = match ValueData::from(self.values[old_value]) {
1002            ValueData::Inst { num, inst, .. } => (num, inst),
1003            _ => panic!("{} is not an instruction result value", old_value),
1004        };
1005        let new_value = self.make_value(ValueData::Inst {
1006            ty: new_type,
1007            num,
1008            inst,
1009        });
1010        let num = num as usize;
1011        let attached = mem::replace(
1012            self.results[inst]
1013                .get_mut(num, &mut self.value_lists)
1014                .expect("Replacing detached result"),
1015            new_value,
1016        );
1017        debug_assert_eq!(
1018            attached,
1019            old_value,
1020            "{} wasn't detached from {}",
1021            old_value,
1022            self.display_inst(inst)
1023        );
1024        new_value
1025    }
1026
1027    /// Clone an instruction, attaching new result `Value`s and
1028    /// returning them.
1029    pub fn clone_inst(&mut self, inst: Inst) -> Inst {
1030        // First, add a clone of the InstructionData.
1031        let inst_data = self.insts[inst];
1032        // If the `inst_data` has a reference to a ValueList, clone it
1033        // as well, because we can't share these (otherwise mutating
1034        // one would affect the other).
1035        let inst_data = inst_data.deep_clone(&mut self.value_lists);
1036        let new_inst = self.make_inst(inst_data);
1037        // Get the controlling type variable.
1038        let ctrl_typevar = self.ctrl_typevar(inst);
1039        // Create new result values.
1040        let num_results = self.make_inst_results(new_inst, ctrl_typevar);
1041        // Copy over PCC facts, if any.
1042        for i in 0..num_results {
1043            let old_result = self.inst_results(inst)[i];
1044            let new_result = self.inst_results(new_inst)[i];
1045            self.facts[new_result] = self.facts[old_result].clone();
1046        }
1047        new_inst
1048    }
1049
1050    /// Get the first result of an instruction.
1051    ///
1052    /// This function panics if the instruction doesn't have any result.
1053    pub fn first_result(&self, inst: Inst) -> Value {
1054        self.results[inst]
1055            .first(&self.value_lists)
1056            .expect("Instruction has no results")
1057    }
1058
1059    /// Test if `inst` has any result values currently.
1060    pub fn has_results(&self, inst: Inst) -> bool {
1061        !self.results[inst].is_empty()
1062    }
1063
1064    /// Return all the results of an instruction.
1065    pub fn inst_results(&self, inst: Inst) -> &[Value] {
1066        self.results[inst].as_slice(&self.value_lists)
1067    }
1068
1069    /// Return all the results of an instruction as ValueList.
1070    pub fn inst_results_list(&self, inst: Inst) -> ValueList {
1071        self.results[inst]
1072    }
1073
1074    /// Create a union of two values.
1075    pub fn union(&mut self, x: Value, y: Value) -> Value {
1076        // Get the type.
1077        let ty = self.value_type(x);
1078        debug_assert_eq!(ty, self.value_type(y));
1079        self.make_value(ValueData::Union { ty, x, y })
1080    }
1081
1082    /// Get the call signature of a direct or indirect call instruction.
1083    /// Returns `None` if `inst` is not a call instruction.
1084    pub fn call_signature(&self, inst: Inst) -> Option<SigRef> {
1085        match self.insts[inst].analyze_call(&self.value_lists) {
1086            CallInfo::NotACall => None,
1087            CallInfo::Direct(f, _) => Some(self.ext_funcs[f].signature),
1088            CallInfo::Indirect(s, _) => Some(s),
1089        }
1090    }
1091
1092    /// Like `call_signature` but returns none for tail call instructions.
1093    fn non_tail_call_signature(&self, inst: Inst) -> Option<SigRef> {
1094        let sig = self.call_signature(inst)?;
1095        match self.insts[inst].opcode() {
1096            ir::Opcode::ReturnCall | ir::Opcode::ReturnCallIndirect => None,
1097            _ => Some(sig),
1098        }
1099    }
1100
1101    // Only for use by the verifier. Everyone else should just use
1102    // `dfg.inst_results(inst).len()`.
1103    pub(crate) fn num_expected_results_for_verifier(&self, inst: Inst) -> usize {
1104        match self.non_tail_call_signature(inst) {
1105            Some(sig) => self.signatures[sig].returns.len(),
1106            None => {
1107                let constraints = self.insts[inst].opcode().constraints();
1108                constraints.num_fixed_results()
1109            }
1110        }
1111    }
1112
1113    /// Get the result types of the given instruction.
1114    pub fn inst_result_types<'a>(
1115        &'a self,
1116        inst: Inst,
1117        ctrl_typevar: Type,
1118    ) -> impl iter::ExactSizeIterator<Item = Type> + 'a {
1119        return match self.non_tail_call_signature(inst) {
1120            Some(sig) => InstResultTypes::Signature(self, sig, 0),
1121            None => {
1122                let constraints = self.insts[inst].opcode().constraints();
1123                InstResultTypes::Constraints(constraints, ctrl_typevar, 0)
1124            }
1125        };
1126
1127        enum InstResultTypes<'a> {
1128            Signature(&'a DataFlowGraph, SigRef, usize),
1129            Constraints(ir::instructions::OpcodeConstraints, Type, usize),
1130        }
1131
1132        impl Iterator for InstResultTypes<'_> {
1133            type Item = Type;
1134
1135            fn next(&mut self) -> Option<Type> {
1136                match self {
1137                    InstResultTypes::Signature(dfg, sig, i) => {
1138                        let param = dfg.signatures[*sig].returns.get(*i)?;
1139                        *i += 1;
1140                        Some(param.value_type)
1141                    }
1142                    InstResultTypes::Constraints(constraints, ctrl_ty, i) => {
1143                        if *i < constraints.num_fixed_results() {
1144                            let ty = constraints.result_type(*i, *ctrl_ty);
1145                            *i += 1;
1146                            Some(ty)
1147                        } else {
1148                            None
1149                        }
1150                    }
1151                }
1152            }
1153
1154            fn size_hint(&self) -> (usize, Option<usize>) {
1155                let len = match self {
1156                    InstResultTypes::Signature(dfg, sig, i) => {
1157                        dfg.signatures[*sig].returns.len() - *i
1158                    }
1159                    InstResultTypes::Constraints(constraints, _, i) => {
1160                        constraints.num_fixed_results() - *i
1161                    }
1162                };
1163                (len, Some(len))
1164            }
1165        }
1166
1167        impl ExactSizeIterator for InstResultTypes<'_> {}
1168    }
1169
1170    /// Compute the type of an instruction result from opcode constraints and call signatures.
1171    ///
1172    /// This computes the same sequence of result types that `make_inst_results()` above would
1173    /// assign to the created result values, but it does not depend on `make_inst_results()` being
1174    /// called first.
1175    ///
1176    /// Returns `None` if asked about a result index that is too large.
1177    pub fn compute_result_type(
1178        &self,
1179        inst: Inst,
1180        result_idx: usize,
1181        ctrl_typevar: Type,
1182    ) -> Option<Type> {
1183        self.inst_result_types(inst, ctrl_typevar).nth(result_idx)
1184    }
1185
1186    /// Get the controlling type variable, or `INVALID` if `inst` isn't polymorphic.
1187    pub fn ctrl_typevar(&self, inst: Inst) -> Type {
1188        let constraints = self.insts[inst].opcode().constraints();
1189
1190        if !constraints.is_polymorphic() {
1191            types::INVALID
1192        } else if constraints.requires_typevar_operand() {
1193            // Not all instruction formats have a designated operand, but in that case
1194            // `requires_typevar_operand()` should never be true.
1195            self.value_type(
1196                self.insts[inst]
1197                    .typevar_operand(&self.value_lists)
1198                    .unwrap_or_else(|| {
1199                        panic!(
1200                            "Instruction format for {:?} doesn't have a designated operand",
1201                            self.insts[inst]
1202                        )
1203                    }),
1204            )
1205        } else {
1206            self.value_type(self.first_result(inst))
1207        }
1208    }
1209}
1210
1211/// basic blocks.
1212impl DataFlowGraph {
1213    /// Create a new basic block.
1214    pub fn make_block(&mut self) -> Block {
1215        self.blocks.add()
1216    }
1217
1218    /// Get the number of parameters on `block`.
1219    pub fn num_block_params(&self, block: Block) -> usize {
1220        self.blocks[block].params(&self.value_lists).len()
1221    }
1222
1223    /// Get the parameters on `block`.
1224    pub fn block_params(&self, block: Block) -> &[Value] {
1225        self.blocks[block].params(&self.value_lists)
1226    }
1227
1228    /// Get the types of the parameters on `block`.
1229    pub fn block_param_types(&self, block: Block) -> impl Iterator<Item = Type> + '_ {
1230        self.block_params(block).iter().map(|&v| self.value_type(v))
1231    }
1232
1233    /// Append a parameter with type `ty` to `block`.
1234    pub fn append_block_param(&mut self, block: Block, ty: Type) -> Value {
1235        let param = self.values.next_key();
1236        let num = self.blocks[block].params.push(param, &mut self.value_lists);
1237        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
1238        self.make_value(ValueData::Param {
1239            ty,
1240            num: num as u16,
1241            block,
1242        })
1243    }
1244
1245    /// Removes `val` from `block`'s parameters by swapping it with the last parameter on `block`.
1246    /// Returns the position of `val` before removal.
1247    ///
1248    /// *Important*: to ensure O(1) deletion, this method swaps the removed parameter with the
1249    /// last `block` parameter. This can disrupt all the branch instructions jumping to this
1250    /// `block` for which you have to change the branch argument order if necessary.
1251    ///
1252    /// Panics if `val` is not a block parameter.
1253    pub fn swap_remove_block_param(&mut self, val: Value) -> usize {
1254        let (block, num) =
1255            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
1256                (block, num)
1257            } else {
1258                panic!("{} must be a block parameter", val);
1259            };
1260        self.blocks[block]
1261            .params
1262            .swap_remove(num as usize, &mut self.value_lists);
1263        if let Some(last_arg_val) = self.blocks[block]
1264            .params
1265            .get(num as usize, &self.value_lists)
1266        {
1267            // We update the position of the old last arg.
1268            let mut last_arg_data = ValueData::from(self.values[last_arg_val]);
1269            if let ValueData::Param {
1270                num: ref mut old_num,
1271                ..
1272            } = &mut last_arg_data
1273            {
1274                *old_num = num;
1275                self.values[last_arg_val] = last_arg_data.into();
1276            } else {
1277                panic!("{} should be a Block parameter", last_arg_val);
1278            }
1279        }
1280        num as usize
1281    }
1282
1283    /// Removes `val` from `block`'s parameters by a standard linear time list removal which
1284    /// preserves ordering. Also updates the values' data.
1285    pub fn remove_block_param(&mut self, val: Value) {
1286        let (block, num) =
1287            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[val]) {
1288                (block, num)
1289            } else {
1290                panic!("{} must be a block parameter", val);
1291            };
1292        self.blocks[block]
1293            .params
1294            .remove(num as usize, &mut self.value_lists);
1295        for index in num..(self.num_block_params(block) as u16) {
1296            let packed = &mut self.values[self.blocks[block]
1297                .params
1298                .get(index as usize, &self.value_lists)
1299                .unwrap()];
1300            let mut data = ValueData::from(*packed);
1301            match &mut data {
1302                ValueData::Param { ref mut num, .. } => {
1303                    *num -= 1;
1304                    *packed = data.into();
1305                }
1306                _ => panic!(
1307                    "{} must be a block parameter",
1308                    self.blocks[block]
1309                        .params
1310                        .get(index as usize, &self.value_lists)
1311                        .unwrap()
1312                ),
1313            }
1314        }
1315    }
1316
1317    /// Append an existing value to `block`'s parameters.
1318    ///
1319    /// The appended value can't already be attached to something else.
1320    ///
1321    /// In almost all cases, you should be using `append_block_param()` instead of this method.
1322    pub fn attach_block_param(&mut self, block: Block, param: Value) {
1323        debug_assert!(!self.value_is_attached(param));
1324        let num = self.blocks[block].params.push(param, &mut self.value_lists);
1325        debug_assert!(num <= u16::MAX as usize, "Too many parameters on block");
1326        let ty = self.value_type(param);
1327        self.values[param] = ValueData::Param {
1328            ty,
1329            num: num as u16,
1330            block,
1331        }
1332        .into();
1333    }
1334
1335    /// Replace a block parameter with a new value of type `ty`.
1336    ///
1337    /// The `old_value` must be an attached block parameter. It is removed from its place in the list
1338    /// of parameters and replaced by a new value of type `new_type`. The new value gets the same
1339    /// position in the list, and other parameters are not disturbed.
1340    ///
1341    /// The old value is left detached, so it should probably be changed into something else.
1342    ///
1343    /// Returns the new value.
1344    pub fn replace_block_param(&mut self, old_value: Value, new_type: Type) -> Value {
1345        // Create new value identical to the old one except for the type.
1346        let (block, num) =
1347            if let ValueData::Param { num, block, .. } = ValueData::from(self.values[old_value]) {
1348                (block, num)
1349            } else {
1350                panic!("{} must be a block parameter", old_value);
1351            };
1352        let new_arg = self.make_value(ValueData::Param {
1353            ty: new_type,
1354            num,
1355            block,
1356        });
1357
1358        self.blocks[block]
1359            .params
1360            .as_mut_slice(&mut self.value_lists)[num as usize] = new_arg;
1361        new_arg
1362    }
1363
1364    /// Detach all the parameters from `block` and return them as a `ValueList`.
1365    ///
1366    /// This is a quite low-level operation. Sensible things to do with the detached block parameters
1367    /// is to put them back on the same block with `attach_block_param()` or change them into aliases
1368    /// with `change_to_alias()`.
1369    pub fn detach_block_params(&mut self, block: Block) -> ValueList {
1370        self.blocks[block].params.take()
1371    }
1372
1373    /// Merge the facts for two values. If both values have facts and
1374    /// they differ, both values get a special "conflict" fact that is
1375    /// never satisfied.
1376    pub fn merge_facts(&mut self, a: Value, b: Value) {
1377        let a = self.resolve_aliases(a);
1378        let b = self.resolve_aliases(b);
1379        match (&self.facts[a], &self.facts[b]) {
1380            (Some(a), Some(b)) if a == b => { /* nothing */ }
1381            (None, None) => { /* nothing */ }
1382            (Some(a), None) => {
1383                self.facts[b] = Some(a.clone());
1384            }
1385            (None, Some(b)) => {
1386                self.facts[a] = Some(b.clone());
1387            }
1388            (Some(a_fact), Some(b_fact)) => {
1389                assert_eq!(self.value_type(a), self.value_type(b));
1390                let merged = Fact::intersect(a_fact, b_fact);
1391                crate::trace!(
1392                    "facts merge on {} and {}: {:?}, {:?} -> {:?}",
1393                    a,
1394                    b,
1395                    a_fact,
1396                    b_fact,
1397                    merged,
1398                );
1399                self.facts[a] = Some(merged.clone());
1400                self.facts[b] = Some(merged);
1401            }
1402        }
1403    }
1404}
1405
1406/// Contents of a basic block.
1407///
1408/// Parameters on a basic block are values that dominate everything in the block. All
1409/// branches to this block must provide matching arguments, and the arguments to the entry block must
1410/// match the function arguments.
1411#[derive(Clone, PartialEq, Hash)]
1412#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
1413pub struct BlockData {
1414    /// List of parameters to this block.
1415    params: ValueList,
1416}
1417
1418impl BlockData {
1419    fn new() -> Self {
1420        Self {
1421            params: ValueList::new(),
1422        }
1423    }
1424
1425    /// Get the parameters on `block`.
1426    pub fn params<'a>(&self, pool: &'a ValueListPool) -> &'a [Value] {
1427        self.params.as_slice(pool)
1428    }
1429}
1430
1431/// Object that can display an instruction.
1432pub struct DisplayInst<'a>(&'a DataFlowGraph, Inst);
1433
1434impl<'a> fmt::Display for DisplayInst<'a> {
1435    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1436        let dfg = self.0;
1437        let inst = self.1;
1438
1439        if let Some((first, rest)) = dfg.inst_results(inst).split_first() {
1440            write!(f, "{}", first)?;
1441            for v in rest {
1442                write!(f, ", {}", v)?;
1443            }
1444            write!(f, " = ")?;
1445        }
1446
1447        let typevar = dfg.ctrl_typevar(inst);
1448        if typevar.is_invalid() {
1449            write!(f, "{}", dfg.insts[inst].opcode())?;
1450        } else {
1451            write!(f, "{}.{}", dfg.insts[inst].opcode(), typevar)?;
1452        }
1453        write_operands(f, dfg, inst)
1454    }
1455}
1456
1457/// Parser routines. These routines should not be used outside the parser.
1458impl DataFlowGraph {
1459    /// Set the type of a value. This is only for use in the parser, which needs
1460    /// to create invalid values for index padding which may be reassigned later.
1461    #[cold]
1462    fn set_value_type_for_parser(&mut self, v: Value, t: Type) {
1463        assert_eq!(
1464            self.value_type(v),
1465            types::INVALID,
1466            "this function is only for assigning types to previously invalid values"
1467        );
1468        self.values[v].set_type(t);
1469    }
1470
1471    /// Check that the given concrete `Type` has been defined in the function.
1472    pub fn check_dynamic_type(&mut self, ty: Type) -> Option<Type> {
1473        debug_assert!(ty.is_dynamic_vector());
1474        if self
1475            .dynamic_types
1476            .values()
1477            .any(|dyn_ty_data| dyn_ty_data.concrete().unwrap() == ty)
1478        {
1479            Some(ty)
1480        } else {
1481            None
1482        }
1483    }
1484
1485    /// Create result values for `inst`, reusing the provided detached values.
1486    /// This is similar to `make_inst_results_reusing` except it's only for use
1487    /// in the parser, which needs to reuse previously invalid values.
1488    #[cold]
1489    pub fn make_inst_results_for_parser(
1490        &mut self,
1491        inst: Inst,
1492        ctrl_typevar: Type,
1493        reuse: &[Value],
1494    ) -> usize {
1495        let mut reuse_iter = reuse.iter().copied();
1496        let result_tys: SmallVec<[_; 16]> = self.inst_result_types(inst, ctrl_typevar).collect();
1497        for ty in result_tys {
1498            if ty.is_dynamic_vector() {
1499                self.check_dynamic_type(ty)
1500                    .unwrap_or_else(|| panic!("Use of undeclared dynamic type: {}", ty));
1501            }
1502            if let Some(v) = reuse_iter.next() {
1503                self.set_value_type_for_parser(v, ty);
1504            }
1505        }
1506
1507        self.make_inst_results_reusing(inst, ctrl_typevar, reuse.iter().map(|x| Some(*x)))
1508    }
1509
1510    /// Similar to `append_block_param`, append a parameter with type `ty` to
1511    /// `block`, but using value `val`. This is only for use by the parser to
1512    /// create parameters with specific values.
1513    #[cold]
1514    pub fn append_block_param_for_parser(&mut self, block: Block, ty: Type, val: Value) {
1515        let num = self.blocks[block].params.push(val, &mut self.value_lists);
1516        assert!(num <= u16::MAX as usize, "Too many parameters on block");
1517        self.values[val] = ValueData::Param {
1518            ty,
1519            num: num as u16,
1520            block,
1521        }
1522        .into();
1523    }
1524
1525    /// Create a new value alias. This is only for use by the parser to create
1526    /// aliases with specific values, and the printer for testing.
1527    #[cold]
1528    pub fn make_value_alias_for_serialization(&mut self, src: Value, dest: Value) {
1529        assert_ne!(src, Value::reserved_value());
1530        assert_ne!(dest, Value::reserved_value());
1531
1532        let ty = if self.values.is_valid(src) {
1533            self.value_type(src)
1534        } else {
1535            // As a special case, if we can't resolve the aliasee yet, use INVALID
1536            // temporarily. It will be resolved later in parsing.
1537            types::INVALID
1538        };
1539        let data = ValueData::Alias { ty, original: src };
1540        self.values[dest] = data.into();
1541    }
1542
1543    /// If `v` is already defined as an alias, return its destination value.
1544    /// Otherwise return None. This allows the parser to coalesce identical
1545    /// alias definitions, and the printer to identify an alias's immediate target.
1546    #[cold]
1547    pub fn value_alias_dest_for_serialization(&self, v: Value) -> Option<Value> {
1548        if let ValueData::Alias { original, .. } = ValueData::from(self.values[v]) {
1549            Some(original)
1550        } else {
1551            None
1552        }
1553    }
1554
1555    /// Compute the type of an alias. This is only for use in the parser.
1556    /// Returns false if an alias cycle was encountered.
1557    #[cold]
1558    pub fn set_alias_type_for_parser(&mut self, v: Value) -> bool {
1559        if let Some(resolved) = maybe_resolve_aliases(&self.values, v) {
1560            let old_ty = self.value_type(v);
1561            let new_ty = self.value_type(resolved);
1562            if old_ty == types::INVALID {
1563                self.set_value_type_for_parser(v, new_ty);
1564            } else {
1565                assert_eq!(old_ty, new_ty);
1566            }
1567            true
1568        } else {
1569            false
1570        }
1571    }
1572
1573    /// Create an invalid value, to pad the index space. This is only for use by
1574    /// the parser to pad out the value index space.
1575    #[cold]
1576    pub fn make_invalid_value_for_parser(&mut self) {
1577        let data = ValueData::Alias {
1578            ty: types::INVALID,
1579            original: Value::reserved_value(),
1580        };
1581        self.make_value(data);
1582    }
1583
1584    /// Check if a value reference is valid, while being aware of aliases which
1585    /// may be unresolved while parsing.
1586    #[cold]
1587    pub fn value_is_valid_for_parser(&self, v: Value) -> bool {
1588        if !self.value_is_valid(v) {
1589            return false;
1590        }
1591        if let ValueData::Alias { ty, .. } = ValueData::from(self.values[v]) {
1592            ty != types::INVALID
1593        } else {
1594            true
1595        }
1596    }
1597}
1598
1599#[cfg(test)]
1600mod tests {
1601    use super::*;
1602    use crate::cursor::{Cursor, FuncCursor};
1603    use crate::ir::{Function, Opcode, TrapCode};
1604    use alloc::string::ToString;
1605
1606    #[test]
1607    fn make_inst() {
1608        let mut dfg = DataFlowGraph::new();
1609
1610        let idata = InstructionData::UnaryImm {
1611            opcode: Opcode::Iconst,
1612            imm: 0.into(),
1613        };
1614        let inst = dfg.make_inst(idata);
1615
1616        dfg.make_inst_results(inst, types::I32);
1617        assert_eq!(inst.to_string(), "inst0");
1618        assert_eq!(dfg.display_inst(inst).to_string(), "v0 = iconst.i32 0");
1619
1620        // Immutable reference resolution.
1621        {
1622            let immdfg = &dfg;
1623            let ins = &immdfg.insts[inst];
1624            assert_eq!(ins.opcode(), Opcode::Iconst);
1625        }
1626
1627        // Results.
1628        let val = dfg.first_result(inst);
1629        assert_eq!(dfg.inst_results(inst), &[val]);
1630
1631        assert_eq!(dfg.value_def(val), ValueDef::Result(inst, 0));
1632        assert_eq!(dfg.value_type(val), types::I32);
1633
1634        // Replacing results.
1635        assert!(dfg.value_is_attached(val));
1636        let v2 = dfg.replace_result(val, types::F64);
1637        assert!(!dfg.value_is_attached(val));
1638        assert!(dfg.value_is_attached(v2));
1639        assert_eq!(dfg.inst_results(inst), &[v2]);
1640        assert_eq!(dfg.value_def(v2), ValueDef::Result(inst, 0));
1641        assert_eq!(dfg.value_type(v2), types::F64);
1642    }
1643
1644    #[test]
1645    fn no_results() {
1646        let mut dfg = DataFlowGraph::new();
1647
1648        let idata = InstructionData::Trap {
1649            opcode: Opcode::Trap,
1650            code: TrapCode::User(0),
1651        };
1652        let inst = dfg.make_inst(idata);
1653        assert_eq!(dfg.display_inst(inst).to_string(), "trap user0");
1654
1655        // Result slice should be empty.
1656        assert_eq!(dfg.inst_results(inst), &[]);
1657    }
1658
1659    #[test]
1660    fn block() {
1661        let mut dfg = DataFlowGraph::new();
1662
1663        let block = dfg.make_block();
1664        assert_eq!(block.to_string(), "block0");
1665        assert_eq!(dfg.num_block_params(block), 0);
1666        assert_eq!(dfg.block_params(block), &[]);
1667        assert!(dfg.detach_block_params(block).is_empty());
1668        assert_eq!(dfg.num_block_params(block), 0);
1669        assert_eq!(dfg.block_params(block), &[]);
1670
1671        let arg1 = dfg.append_block_param(block, types::F32);
1672        assert_eq!(arg1.to_string(), "v0");
1673        assert_eq!(dfg.num_block_params(block), 1);
1674        assert_eq!(dfg.block_params(block), &[arg1]);
1675
1676        let arg2 = dfg.append_block_param(block, types::I16);
1677        assert_eq!(arg2.to_string(), "v1");
1678        assert_eq!(dfg.num_block_params(block), 2);
1679        assert_eq!(dfg.block_params(block), &[arg1, arg2]);
1680
1681        assert_eq!(dfg.value_def(arg1), ValueDef::Param(block, 0));
1682        assert_eq!(dfg.value_def(arg2), ValueDef::Param(block, 1));
1683        assert_eq!(dfg.value_type(arg1), types::F32);
1684        assert_eq!(dfg.value_type(arg2), types::I16);
1685
1686        // Swap the two block parameters.
1687        let vlist = dfg.detach_block_params(block);
1688        assert_eq!(dfg.num_block_params(block), 0);
1689        assert_eq!(dfg.block_params(block), &[]);
1690        assert_eq!(vlist.as_slice(&dfg.value_lists), &[arg1, arg2]);
1691        dfg.attach_block_param(block, arg2);
1692        let arg3 = dfg.append_block_param(block, types::I32);
1693        dfg.attach_block_param(block, arg1);
1694        assert_eq!(dfg.block_params(block), &[arg2, arg3, arg1]);
1695    }
1696
1697    #[test]
1698    fn replace_block_params() {
1699        let mut dfg = DataFlowGraph::new();
1700
1701        let block = dfg.make_block();
1702        let arg1 = dfg.append_block_param(block, types::F32);
1703
1704        let new1 = dfg.replace_block_param(arg1, types::I64);
1705        assert_eq!(dfg.value_type(arg1), types::F32);
1706        assert_eq!(dfg.value_type(new1), types::I64);
1707        assert_eq!(dfg.block_params(block), &[new1]);
1708
1709        dfg.attach_block_param(block, arg1);
1710        assert_eq!(dfg.block_params(block), &[new1, arg1]);
1711
1712        let new2 = dfg.replace_block_param(arg1, types::I8);
1713        assert_eq!(dfg.value_type(arg1), types::F32);
1714        assert_eq!(dfg.value_type(new2), types::I8);
1715        assert_eq!(dfg.block_params(block), &[new1, new2]);
1716
1717        dfg.attach_block_param(block, arg1);
1718        assert_eq!(dfg.block_params(block), &[new1, new2, arg1]);
1719
1720        let new3 = dfg.replace_block_param(new2, types::I16);
1721        assert_eq!(dfg.value_type(new1), types::I64);
1722        assert_eq!(dfg.value_type(new2), types::I8);
1723        assert_eq!(dfg.value_type(new3), types::I16);
1724        assert_eq!(dfg.block_params(block), &[new1, new3, arg1]);
1725    }
1726
1727    #[test]
1728    fn swap_remove_block_params() {
1729        let mut dfg = DataFlowGraph::new();
1730
1731        let block = dfg.make_block();
1732        let arg1 = dfg.append_block_param(block, types::F32);
1733        let arg2 = dfg.append_block_param(block, types::F32);
1734        let arg3 = dfg.append_block_param(block, types::F32);
1735        assert_eq!(dfg.block_params(block), &[arg1, arg2, arg3]);
1736
1737        dfg.swap_remove_block_param(arg1);
1738        assert_eq!(dfg.value_is_attached(arg1), false);
1739        assert_eq!(dfg.value_is_attached(arg2), true);
1740        assert_eq!(dfg.value_is_attached(arg3), true);
1741        assert_eq!(dfg.block_params(block), &[arg3, arg2]);
1742        dfg.swap_remove_block_param(arg2);
1743        assert_eq!(dfg.value_is_attached(arg2), false);
1744        assert_eq!(dfg.value_is_attached(arg3), true);
1745        assert_eq!(dfg.block_params(block), &[arg3]);
1746        dfg.swap_remove_block_param(arg3);
1747        assert_eq!(dfg.value_is_attached(arg3), false);
1748        assert_eq!(dfg.block_params(block), &[]);
1749    }
1750
1751    #[test]
1752    fn aliases() {
1753        use crate::ir::condcodes::IntCC;
1754        use crate::ir::InstBuilder;
1755
1756        let mut func = Function::new();
1757        let block0 = func.dfg.make_block();
1758        let mut pos = FuncCursor::new(&mut func);
1759        pos.insert_block(block0);
1760
1761        // Build a little test program.
1762        let v1 = pos.ins().iconst(types::I32, 42);
1763
1764        // Make sure we can resolve value aliases even when values is empty.
1765        assert_eq!(pos.func.dfg.resolve_aliases(v1), v1);
1766
1767        let arg0 = pos.func.dfg.append_block_param(block0, types::I32);
1768        let (s, c) = pos.ins().uadd_overflow(v1, arg0);
1769        let iadd = match pos.func.dfg.value_def(s) {
1770            ValueDef::Result(i, 0) => i,
1771            _ => panic!(),
1772        };
1773
1774        // Remove `c` from the result list.
1775        pos.func.stencil.dfg.results[iadd].remove(1, &mut pos.func.stencil.dfg.value_lists);
1776
1777        // Replace `uadd_overflow` with a normal `iadd` and an `icmp`.
1778        pos.func.dfg.replace(iadd).iadd(v1, arg0);
1779        let c2 = pos.ins().icmp(IntCC::Equal, s, v1);
1780        pos.func.dfg.change_to_alias(c, c2);
1781
1782        assert_eq!(pos.func.dfg.resolve_aliases(c2), c2);
1783        assert_eq!(pos.func.dfg.resolve_aliases(c), c2);
1784    }
1785
1786    #[test]
1787    fn cloning() {
1788        use crate::ir::InstBuilder;
1789
1790        let mut func = Function::new();
1791        let mut sig = Signature::new(crate::isa::CallConv::SystemV);
1792        sig.params.push(ir::AbiParam::new(types::I32));
1793        let sig = func.import_signature(sig);
1794        let block0 = func.dfg.make_block();
1795        let mut pos = FuncCursor::new(&mut func);
1796        pos.insert_block(block0);
1797        let v1 = pos.ins().iconst(types::I32, 0);
1798        let v2 = pos.ins().iconst(types::I32, 1);
1799        let call_inst = pos.ins().call_indirect(sig, v1, &[v1]);
1800        let func = pos.func;
1801
1802        let call_inst_dup = func.dfg.clone_inst(call_inst);
1803        func.dfg.inst_args_mut(call_inst)[0] = v2;
1804        assert_eq!(v1, func.dfg.inst_args(call_inst_dup)[0]);
1805    }
1806}