cpu_timer/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//a Documentation
//! This library provides architecture/implementation specific CPU
//! counters for high precision timing, backed up by a std::time
//! implementation where an architecture has no explicit CPU support
//!
//! The timers are really CPU tick counters, and so are not resilient
//! to threads being descheduled or being moved between CPU cores; the
//! library is designed for precise timing of short code sections
//! where the constraints are understood. Furthermore, the timer
//! values are thus not in seconds but in other arbitrary units -
//! useful for comparing execution of different parts of code, but
//! requiring another mechanism to determine the mapping from ticks to
//! seconds
//!
//! # Precision
//!
//! For some architectures a real CPU ASM instruction is used to get
//! the tick count. For x86_64 this returns (in an unvirtualized
//! world) the real CPU tick counter, with a fine precision. For
//! Aarch64 on MacOs this is no better than using std::time, and has a
//! precision of about 40 ticks. However, the asm implementation has a
//! lower overhead on Aarch64 on MacOs, so it is still worth using.
//!
//! The library does not attempt to take into account any overheads of
//! using the timers; that is for the user. Normally the overheads
//! will be small compared to the times being measured.
//!
//! # CPU support (for non-experimental Rustc target architectures)
//!
//! For the stable Rustc-supported architectures, CPU implementations
//! are provided for:
//!
//! - [ ] x86    
//! - [x] x86_64
//! - [x] aarch64
//! - [ ] wasm32
//!
//! Nonsupported architectures resort to the [std::time::Instant]
//! 'now' method instead (which can be perfectly adequate)
//!
//! # Types
//!
//! The types in the library are all generic on *UseAsm* whether the CPU
//! architecture specific version (if provided) of the timer should be
//! used, or if std::time should be used instead. For architectures
//! without a CPU implementation, the std::time version is used
//! whatever the value of the generic.
//!
//! ## Timer
//!
//! The base type provided by this library is [Timer], which simply
//! has a `start` method and an `elapsed` method, to delver the ticks
//! (as a u64) since the last `state. It uses a generic *UseAsm* bool;
//! if true then the CPU specific timer implementation is used,
//! otherwise it uses std::time.
//!
//! There is an additional method `elapsed_and_update`, which restarts
//! the timer as well as returning the elapsed time, in a single
//! operation.
//!
//! ## DeltaTimer
//!
//! The [DeltaTimer] allows for *recording* the delta in CPU ticks
//! between the entry to a region of code and the exit from it. It
//! uses a generic *UseAsm* bool.
//!
//! ```
//! # use cpu_timer::DeltaTimer;
//! let mut t = DeltaTimer::<true>::default();
//! t.start();
//! // do something! - timed using CPU ticks
//! t.stop();
//! println!("That took {} cpu 'ticks'", t.value());
//!
//! let mut t = DeltaTimer::<false>::default();
//! t.start();
//! // do something! - timed using std::time
//! t.stop();
//! println!("That took {} nanoseconds", t.value());
//! ```
//!
//! ## AccTimer
//!
//! Frequently one will want to repeatedly time a piece of code, to
//! attain an average, or to just accumulate the time taken in some
//! code whenever it is called to determine if it is a 'hotspot'. The
//! [AccTimer] accumulates the time delta between start and stop.
//!
//! ```
//! # use cpu_timer::AccTimer;
//! let mut t = AccTimer::<true>::default();
//! for i in 0..100 {
//!     t.start();
//!     // do something!
//!     t.stop();
//!     println!("Iteration {i} took {} ticks", t.last_delta());
//! }
//! println!("That took an average of {} ticks", t.acc_value()/100);
//! ```
//!
//! ## AccArray
//!
//! An [AccArray] is used to accumulate timer values, storing not just
//! the times but also (optionally) the number of occurrences.
//!
//! It is used as `AccVec<A, T, C, N>`; A is a bool; T the time accumulator type; C the counter type; N the number of accumulators.
//!
//!  * A is true if the CPU-specific timer should be used, false if
//!    std::time should be used
//!
//!  * T is the type used for accumulating time deltas (u8, u16, u32,
//!    u64, u128, usize, f32, f64, or () to not accumulate times)
//!
//!  * C is the type used for counting occurrences (u8, u16, u32,
//!     u64, u128, usize, f32, f64, or () to not count occurrences)
//!
//!  * N can be any usize; the space for the occurrence accumulators
//!    and counters is statically held within the type, so *N* effects
//!    the size of the AccArray
//!
//! The array can be cleared - clearing the accumulators.
//!
//! A use is to first invoke `start` and then later `acc_n` with a
//! specific index which identifies the code just executed; the time
//! elapsed since the last start is accumulated and the occurrences
//! counted.
//!
//! ## AccVec
//!
//! An [AccVec] is a less static version of [AccArray], using an array
//! backed by a `Vec`. It has the same methods, and additional `push`
//! related methods.
//!
//! ## Trace
//!
//! The [Trace] type supports tracing the execution path through some
//! logic, getting deltas along the way
//!
//! ```
//! # use cpu_timer::Trace;
//! let mut t = Trace::<true, u32, 3>::default();
//! t.start();
//!   // do something!
//! t.next();
//!   // do something else!
//! t.next();
//!   // do something else!
//! t.next();
//! println!("The three steps took {:?} ticks", t.trace());
//! ```
//!
//! The trace will have three entries, which are the delta times for
//! the three operations.
//!
//! ## AccTrace
//!
//! The [AccTrace] accumulates a number of iterations of a Trace;
//!
//! ```
//! # use cpu_timer::AccTrace;
//! struct MyThing {
//!     // things ...
//!     /// For timing (perhaps only if #[cfg(debug_assertions)] )
//!     acc: AccTrace::<true, u32,4>,
//! }
//!
//! impl MyThing {
//!     fn do_something_complex(&mut self) {
//!         self.acc.start();
//!         // .. do first complex thing
//!         self.acc.next();
//!         // .. do second complex thing
//!         self.acc.next();
//!         // .. do third complex thing
//!         self.acc.next();
//!         // .. do fourth complex thing
//!         self.acc.next();
//!         self.acc.acc();
//!     }
//! }
//!
//! let mut t = MyThing { // ..
//!     acc: AccTrace::<true, u32, 4>::default()
//! };
//! for _ in 0..100 {
//!     t.do_something_complex();
//! }
//! println!("After 100 iterations the accumulated times for the four steps is {:?} ticks", t.acc.acc_trace());
//! t.acc.clear();
//! // ready to be complex all again
//! ```
//!
//! The trace will have four entries, which are the accumulated delta times for
//! the four complex things.
//!
//! # OS-specific notes
//!
//! These outputs are generated from tests/cpu_timer.rs, test_timer_values
//!
//! The tables will have a rough granularity of the precision of the
//! tick counter. Average time taken is calculated using the fastest
//! 95% of 10,000 calls, as beyond that the outliers should be ignored.
//!
//! ## MacOs aarch64 (MacBook Pro M4 Max Os15.1 rustc 1.84
//!
//! The granularity of the clock appears to be 41 or 42 ticks, and the
//! asm implementation seems to match the std time implementation for this precision.
//!
//! For asm, the average time taken for a call is 3 ticks in release, 9 ticks in debug
//!
//! For std::time, the average time taken for a call is 8 ticks in
//! release, 17 ticks in debug. So clearly there is an overhead for
//! using std::time
//!
//! | %age | arch release |   arch debug | std debug    | std release  |
//! |------|--------------|--------------|--------------|--------------|
//! | 10   |      0       |       0      |       41     |         0    |
//! | 25   |      0       |       0      |       42     |         0    |
//! | 50   |      0       |       0      |       42     |         0    |
//! | 75   |      0       |      41      |       83     |        41    |
//! | 90   |     42       |      41      |       83     |        41    |
//! | 95   |     42       |      41      |       83     |        41    |
//! | 99   |     42       |      42      |       84     |        42    |
//! | 100  |  27084       |    2498      |     2166     |      1125    |
//!
//! ### MacOs aarch64 std::time release
//!
//! Percentile distribution
//! 56, 0
//! 71, 41
//! 99, 42
//! 100, 1125
//!
//! average of up to 95 8
//!
//! ### MacOs aarch64 std::time debug
//!
//! Percentile distribution
//! 6, 41
//! 18, 42
//! 71, 83
//! 98, 84
//! 99, 125
//! 100, 2166
//!
//! average of up to 95 17
//!
//! ### MacOs aarch64 debug
//!
//! Percentile distribution
//! 52, 0
//! 68, 41
//! 99, 42
//! 100, 2958
//!
//! average of up to 95 9
//!
//! ### MacOs aarch64 release
//!
//! Percentile distribution
//! 77, 0
//! 85, 41
//! 99, 42
//! 100, 1500
//!
//! average of up to 95 3
//!
//! ## MacOs x86_64
//!
//! MacBook Pro 2018 Os 15.0 rustc 1.84 2.2GHz i7
//!
//! The granularity of the clock appears to be 2 ticks, and the
//! asm implementation is better than using the std::time implementation
//!
//! The average time taken for a call is 15 ticks in release, 78 (but
//! sometimes 66!) ticks in debug
//!
//! | %age | arch release |   arch debug | std debug    | std release  |
//! |------|--------------|--------------|--------------|--------------|
//! | 10   |     12       |      62      |       72     |        38    |
//! | 25   |     12       |      64      |       74     |        38    |
//! | 50   |     12       |      64      |       79     |        39    |
//! | 75   |     14       |      66      |       81     |        39    |
//! | 90   |     14       |      68      |       83     |        39    |
//! | 95   |     14       |      70      |       83     |        40    |
//! | 99   |     16       |      82      |      132     |        41    |
//! | 100  |  42918       |   65262      |    17101     |     24560    |
//!
//!
//! ### MacOs x86_64 release
//!
//! Percentile distribution
//! 5, 12
//! 73, 14
//! 99, 16
//! 100, 42918
//!
//! average of up to 95 15
//!
//! ### MacOs x86_64 debug
//!
//! Percentile distribution
//! 4, 62
//! 22, 64
//! 55, 66
//! 81, 68
//! 92, 70
//! 96, 72
//! 98, 74
//! 99, 82
//! 100, 65262    
//!
//! average of up to 95 78
//!
//! ### MacOs std::time debug
//!
//! Percentile distribution
//! 1, 70
//! 4, 71
//! 9, 72
//! 15, 73
//! 22, 74
//! 28, 75
//! 34, 76
//! 40, 77
//! 45, 78
//! 50, 79
//! 56, 80
//! 66, 81
//! 79, 82
//! 90, 83
//! 96, 84
//! 98, 85
//! 99, 132
//! 100, 17101
//!
//! ### MacOs std::time release
//!
//! Percentile distribution
//! 3, 37
//! 44, 38
//! 92, 39
//! 96, 40
//! 99, 41
//! 100, 24560

//a Imports
mod delta;
mod traits;

mod acc_vec;
mod arch;
mod base;
mod timers;
mod trace;

//a Export to the crate, but not outside
pub(crate) use base::BaseTimer;
pub(crate) use delta::Delta;
pub(crate) use traits::private;

//a Export to outside
pub use acc_vec::{AccArray, AccVec};
pub use arch::TDesc;
pub use timers::{AccTimer, DeltaTimer, Timer};
pub use trace::{AccTrace, Trace};
pub use traits::{TArch, TraceCount, TraceValue};