1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
use std::borrow::Borrow;
use std::collections::{HashMap, HashSet};
use std::fmt::{Debug, Display};
use std::ops::{Deref, DerefMut};

use cpclib_common::itertools::Itertools;
#[cfg(not(target_arch = "wasm32"))]
use cpclib_common::rayon::iter::IntoParallelRefIterator;
#[cfg(not(target_arch = "wasm32"))]
use cpclib_common::rayon::prelude::*;
use cpclib_common::smallvec::{smallvec, SmallVec};
use cpclib_common::smol_str::SmolStr;
use cpclib_common::{lazy_static, strsim};
use delegate::delegate;
use evalexpr::{build_operator_tree, ContextWithMutableVariables, HashMapContext};
use regex::Regex;

use crate::tokens::expression::LabelPrefix;
use crate::{ExprResult, ListingElement, ToSimpleToken, Token};

/// Structure that ease the addresses manipulation to read/write at the right place
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct PhysicalAddress {
    /// Page number (0 for base, 1 for first page, 2 ...)
    page: u8,
    /// Bank number in the page: 0 to 3
    bank: u8,
    /// Address manipulate by CPU 0x0000 to 0xffff
    address: u16
}

impl From<u16> for PhysicalAddress {
    fn from(nb: u16) -> Self {
        PhysicalAddress::new(nb, 0xC0)
    }
}

impl PhysicalAddress {
    pub fn new(address: u16, mmr: u8) -> Self {
        if mmr == 0xC1 {
            return PhysicalAddress {
                page: 1,
                bank: (address / 0x4000) as u8,
                address: address % 0x4000
            };
        }

        let possible_page = ((mmr >> 3) & 0b111) + 1;
        let possible_bank = mmr & 0b11;
        let standard_bank = match address {
            0x0000..0x4000 => 0,
            0x4000..0x8000 => 1,
            0x8000..0xC000 => 2,
            0xC000.. => 3
        };
        let is_4000 = (0x4000..0x8000).contains(&address);
        let is_c000 = address >= 0xC000;

        let (page, bank) = if (mmr & 0b100) != 0 {
            if is_4000 {
                (possible_page, possible_bank)
            }
            else {
                (0, possible_bank)
            }
        }
        else {
            match mmr & 0b11 {
                0b000 => (0, standard_bank),
                0b001 => {
                    if is_c000 {
                        (possible_page, standard_bank)
                    }
                    else {
                        (0, standard_bank)
                    }
                }
                0b010 => (possible_page, standard_bank),
                0b011 => {
                    if is_4000 {
                        (0, 3)
                    }
                    else if is_c000 {
                        (possible_page, 3)
                    }
                    else {
                        (0, standard_bank)
                    }
                }
                _ => unreachable!()
            }
        };

        Self {
            address,
            bank,
            page
        }
    }

    pub fn offset_in_bank(&self) -> u16 {
        self.address % 0x4000
    }

    pub fn offset_in_page(&self) -> u16 {
        self.offset_in_bank() + self.bank as u16 * 0x4000
    }

    pub fn offset_in_cpc(&self) -> u32 {
        self.offset_in_page() as u32 + self.page as u32 * 0x1_0000
    }

    pub fn address(&self) -> u16 {
        self.address
    }

    pub fn bank(&self) -> u8 {
        self.bank
    }

    pub fn page(&self) -> u8 {
        self.page
    }

    pub fn ga_bank(&self) -> u16 {
        let low = if self.page() == 0 {
            0b1100_0000
        }
        else {
            0b1100_0100 + ((self.page() - 1) << 3) + self.bank
        } as u16;
        low + 0x7F00
    }

    pub fn ga_page(&self) -> u16 {
        let low = if self.page() == 0 {
            0b1100_0000
        }
        else {
            0b1100_0010 + ((self.page() - 1) << 3)
        } as u16;
        low + 0x7F00
    }
}

#[derive(Debug, Clone)]
pub enum SymbolError {
    UnknownAssemblingAddress,
    CannotModify(Symbol),
    WrongSymbol(Symbol),
    NoNamespaceActive
}

/// Encode the data for the structure directive
#[derive(Debug, Clone)]
pub struct Struct {
    name: SmolStr,
    content: Vec<(SmolStr, Token)>,
    source: Option<Source>
}

impl Struct {
    pub fn new<T: ListingElement + ToSimpleToken, S: Borrow<str>>(
        name: impl AsRef<str>,
        content: &[(S, T)],
        source: Option<Source>
    ) -> Self {
        Self {
            name: name.as_ref().into(),
            content: content
                .iter()
                .map(|(s, t)| (SmolStr::from(s.borrow()), t.as_simple_token().into_owned()))
                .collect_vec(),
            source
        }
    }

    pub fn name(&self) -> &str {
        self.name.as_str()
    }

    pub fn source(&self) -> Option<&Source> {
        self.source.as_ref()
    }

    pub fn content(&self) -> &[(SmolStr, Token)] {
        self.content.as_ref()
    }

    /// Get the size of each field
    pub fn fields_size<T: SymbolsTableTrait>(&self, table: &T) -> Vec<(&str, i32)> {
        self.content
            .iter()
            .map(|(n, t)| (n.as_ref(), Self::field_size(t, table)))
            .collect_vec()
    }

    /// Get the len of any field
    pub fn field_size<T: SymbolsTableTrait>(token: &Token, table: &T) -> i32 {
        match token {
            Token::Defb(c) => c.len() as i32,
            Token::Defw(c) => 2 * c.len() as i32,
            Token::MacroCall(n, _) => {
                let s = table.struct_value(n).ok().unwrap().unwrap(); // TODO handle error here
                s.len(table)
            }
            _ => unreachable!("{:?}", token)
        }
    }

    /// Get the len of the structure
    pub fn len<T: SymbolsTableTrait>(&self, table: &T) -> i32 {
        self.fields_size(table).iter().map(|(_, s)| *s).sum()
    }

    pub fn nb_args(&self) -> usize {
        self.content.len()
    }
}

#[derive(Debug, Clone)]
pub struct Source {
    fname: String,
    line: usize,
    column: usize
}

impl Source {
    pub fn new(fname: String, line: usize, column: usize) -> Self {
        Source {
            fname,
            line,
            column
        }
    }

    pub fn fname(&self) -> &str {
        &self.fname
    }

    pub fn line(&self) -> usize {
        self.line
    }

    pub fn column(&self) -> usize {
        self.column
    }
}

#[derive(Debug, Clone)]
pub struct Macro {
    // The name of the macro
    name: SmolStr,
    // The name of its arguments
    params: Vec<SmolStr>,
    // The content
    code: String,
    // Origin of the macro (for error messages)
    source: Option<Source>
}

impl Macro {
    pub fn new(name: SmolStr, params: &[&str], code: String, source: Option<Source>) -> Self {
        Macro {
            name,
            params: params.iter().map(|&s| SmolStr::from(s)).collect(),
            code,
            source
        }
    }

    pub fn name(&self) -> &str {
        self.name.as_str()
    }

    pub fn source(&self) -> Option<&Source> {
        self.source.as_ref()
    }

    pub fn code(&self) -> &str {
        self.code.as_ref()
    }

    pub fn params(&self) -> &[SmolStr] {
        &self.params
    }

    pub fn nb_args(&self) -> usize {
        self.params.len()
    }
}

#[derive(Debug, Clone)]
#[allow(missing_docs)]
pub enum Value {
    /// Integer value used in an expression
    Expr(ExprResult),
    String(SmolStr),
    /// Address (use in physical way to ensure all bank/page info are available)
    Address(PhysicalAddress),
    /// Macro information
    Macro(Macro),
    /// Structure information
    Struct(Struct),
    /// Counter for a repetition
    Counter(i32)
}

impl Into<evalexpr::Value> for Value {
    fn into(self) -> evalexpr::Value {
        match self {
            Value::Expr(e) => {
                match e {
                    ExprResult::Float(f) => evalexpr::Value::Float(f.into()),
                    ExprResult::Value(v) => evalexpr::Value::Int(v as _),
                    ExprResult::Char(c) => evalexpr::Value::Int(c as _),
                    ExprResult::Bool(b) => evalexpr::Value::Boolean(b),
                    ExprResult::String(s) => evalexpr::Value::String(s.into()),
                    ExprResult::List(_l) => unimplemented!(),
                    ExprResult::Matrix {
                        width: _,
                        height: _,
                        content: _
                    } => unimplemented!()
                }
            }
            Value::String(s) => evalexpr::Value::String(s.into()),
            Value::Address(v) => evalexpr::Value::Int(v.address() as _),
            Value::Macro(m) => evalexpr::Value::String(m.name.into()),
            Value::Struct(s) => evalexpr::Value::String(s.name.into()),
            Value::Counter(c) => evalexpr::Value::Int(c as _)
        }
    }
}

#[derive(Copy, Clone)]
pub enum SymbolFor {
    Number,
    Address,
    Macro,
    Struct,
    Counter,
    Any
}

impl Value {
    pub fn expr(&self) -> Option<&ExprResult> {
        match self {
            Value::Expr(e) => Some(e),
            _ => None
        }
    }

    pub fn integer(&self) -> Option<i32> {
        match self {
            Value::Expr(ExprResult::Value(i)) => Some(*i),
            Value::Address(addr) => Some(addr.address as _),
            _ => None
        }
    }

    pub fn address(&self) -> Option<&PhysicalAddress> {
        match self {
            Value::Address(addr) => Some(addr),
            _ => None
        }
    }

    pub fn counter(&self) -> Option<i32> {
        match self {
            Value::Counter(i) => Some(*i),
            _ => None
        }
    }

    pub fn r#macro(&self) -> Option<&Macro> {
        match self {
            Value::Macro(m) => Some(m),
            _ => None
        }
    }

    pub fn r#struct(&self) -> Option<&Struct> {
        match self {
            Value::Struct(m) => Some(m),
            _ => None
        }
    }
}

impl From<PhysicalAddress> for Value {
    fn from(a: PhysicalAddress) -> Self {
        Self::Address(a)
    }
}

impl From<Struct> for Value {
    fn from(m: Struct) -> Self {
        Self::Struct(m)
    }
}

impl From<Macro> for Value {
    fn from(m: Macro) -> Self {
        Self::Macro(m)
    }
}

impl<I: Into<ExprResult>> From<I> for Value {
    fn from(i: I) -> Self {
        let value = i.into();
        match &value {
            ExprResult::String(s) => Value::String(s.clone()),
            _ => Value::Expr(value)
        }
    }
}

#[derive(Debug, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
pub struct Symbol(SmolStr);

impl Display for Symbol {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", &self.0)
    }
}
impl From<&str> for Symbol {
    fn from(s: &str) -> Symbol {
        s.to_owned().into()
    }
}

impl From<String> for Symbol {
    fn from(s: String) -> Symbol {
        Symbol(s.into())
    }
}

impl From<&String> for Symbol {
    fn from(s: &String) -> Symbol {
        Symbol(s.into())
    }
}

impl From<SmolStr> for Symbol {
    fn from(s: SmolStr) -> Symbol {
        Symbol(s)
    }
}

impl From<&SmolStr> for Symbol {
    fn from(s: &SmolStr) -> Symbol {
        Symbol(s.clone())
    }
}

impl Symbol {
    pub fn value(&self) -> &str {
        &self.0
    }

    pub fn is_local(&self) -> bool {
        self.0.contains('.')
    }

    pub fn to_uppercase(&self) -> Symbol {
        self.0.to_uppercase().into()
    }
}

/// Public signature of symbols functions
/// TODO add all the other methods
pub trait SymbolsTableTrait {
    /// Return the symbols that correspond to integer values
    fn expression_symbol(&self) -> Vec<(&Symbol, &Value)>;

    /// Return true if the symbol has already been used in an expression
    fn is_used<S: Into<Symbol>>(&self, symbol: S) -> bool;
    /// Add a symbol to the list of used symbols
    fn use_symbol<S: Into<Symbol>>(&mut self, symbol: S);

    /// Return the integer value corredponding to this symbol (if any)
    fn int_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<i32>, SymbolError>;

    fn value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Value>, SymbolError>;
    fn counter_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<i32>, SymbolError>;
    fn macro_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Macro>, SymbolError>;
    fn struct_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Struct>, SymbolError>;
    fn address_value<S: Into<Symbol>>(
        &self,
        symbol: S
    ) -> Result<Option<&PhysicalAddress>, SymbolError>;

    fn remove_symbol<S: Into<Symbol>>(&mut self, symbol: S) -> Result<Option<Value>, SymbolError>;

    fn assign_symbol_to_value<S: Into<Symbol>, V: Into<Value>>(
        &mut self,
        symbol: S,
        value: V
    ) -> Result<Option<Value>, SymbolError>;

    fn enter_namespace(&mut self, namespace: &str);
    fn leave_namespace(&mut self) -> Result<Symbol, SymbolError>;
}

/// Handle Tree like maps.
#[derive(Debug, Clone, Default)]
struct ModuleSymbolTable {
    current: HashMap<Symbol, Value>,
    children: HashMap<Symbol, ModuleSymbolTable>
}

impl Deref for ModuleSymbolTable {
    type Target = HashMap<Symbol, Value>;

    fn deref(&self) -> &Self::Target {
        &self.current
    }
}

impl DerefMut for ModuleSymbolTable {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.current
    }
}

impl ModuleSymbolTable {
    /// Add a new branch in the module tree
    fn add_children(&mut self, new: Symbol) {
        self.children.insert(new, ModuleSymbolTable::default());
    }

    /// Check if the current module has this children
    fn has_children(&self, children: &Symbol) -> bool {
        self.children.contains_key(children)
    }

    fn children(&self, children: &Symbol) -> Option<&ModuleSymbolTable> {
        self.children.get(children)
    }

    fn children_mut(&mut self, children: &Symbol) -> Option<&mut ModuleSymbolTable> {
        self.children.get_mut(children)
    }

    fn iter(&self) -> ModuleSymbolTableIterator {
        ModuleSymbolTableIterator::new(self)
    }
}

struct ModuleSymbolTableIterator<'t> {
    others: Vec<&'t ModuleSymbolTable>,
    current: std::collections::hash_map::Iter<'t, Symbol, Value>
}

impl<'t> ModuleSymbolTableIterator<'t> {
    fn new(table: &'t ModuleSymbolTable) -> Self {
        Self {
            others: table.children.values().collect_vec(),
            current: table.current.iter()
        }
    }
}
impl<'t> Iterator for ModuleSymbolTableIterator<'t> {
    type Item = (&'t Symbol, &'t Value);

    fn next(&mut self) -> Option<Self::Item> {
        let current = self.current.next();
        if current.is_some() {
            current
        }
        else if let Some(next) = self.others.pop() {
            let current = next.current.iter();
            self.others.extend(next.children.values());
            self.current = current;
            self.current.next()
        }
        else {
            None
        }
    }
}

#[derive(Debug, Clone)]
#[allow(missing_docs)]
pub struct SymbolsTable {
    /// Tree of symbols. The default one is the root. build and maintained all over assembling
    map: ModuleSymbolTable,

    /// A kind of clone of map that contains only the information of the current pass
    current_pass_map: ModuleSymbolTable,

    dummy: bool,
    current_global_label: Symbol, //  Value of the current label to allow local labels
    // Stack of namespaces
    namespace_stack: Vec<Symbol>,

    // list of symbols that are assignable (i.e. modified programmatically)
    assignable: HashSet<Symbol>,
    seed_stack: Vec<usize>, // stack of seeds for nested repeat to properly interpret the @ symbol

    /// Contains all the symbols that have been used in expressions
    used_symbols: HashSet<Symbol>
}

impl Default for SymbolsTable {
    fn default() -> Self {
        let mut map = ModuleSymbolTable::default();
        map.add_children("".to_owned().into());
        Self {
            map: map.clone(),
            current_pass_map: map.clone(),
            dummy: false,
            current_global_label: "".into(),
            assignable: Default::default(),
            seed_stack: Vec::new(),
            namespace_stack: Vec::new(),
            used_symbols: HashSet::new()
        }
    }
}

/// Local/global label handling code
impl SymbolsTable {
    pub fn new_pass(&mut self) {
        self.current_pass_map = ModuleSymbolTable::default();
        self.current_pass_map.add_children("".to_owned().into());
    }

    /// Setup the current label for local to global labels conversions
    pub fn set_current_global_label<S: Into<Symbol>>(
        &mut self,
        symbol: S
    ) -> Result<(), SymbolError> {
        let label = symbol.into();

        if !label.value().starts_with('.') && !label.value().starts_with('@') {
            if label.value().contains('.') {
                return Err(SymbolError::WrongSymbol(label));
            }
            self.current_global_label = self.extend_local_and_patterns_for_symbol(label)?;
        }

        Ok(())
    }

    /// Some symbols are local and need to be converted to their global value.
    /// Some have expressions that need to be expended
    pub fn extend_local_and_patterns_for_symbol<S: Into<Symbol>>(
        &self,
        symbol: S
    ) -> Result<Symbol, SymbolError> {
        let symbol = symbol.into();
        let mut symbol = symbol.value().to_owned();

        // handle the labels build with patterns
        // Get the replacement strings
        lazy_static::lazy_static! {
            static ref RE: Regex = Regex::new(r"\{+[^\}]+\}+").unwrap();
        }
        let mut replace = HashSet::new();
        for cap in RE.captures_iter(&symbol) {
            if cap[0] != symbol {
                replace.insert(cap[0].to_owned());
            }
        }

        // make the replacement
        for model in replace.iter() {
            let local_expr = &model[1..model.len() - 1]; // remove {}

            let local_value = match self.value(local_expr)? {
                Some(Value::String(s)) => s.to_string(),
                Some(Value::Expr(e)) => e.to_string(),
                Some(Value::Counter(e)) => e.to_string(),
                _ => {
                    dbg!(local_expr);
                    dbg!(&self);

                    let tree = build_operator_tree(local_expr)
                        .expect("Expression should be valid here. There is a bug in the assembler");

                    // Fill the variable values to allow an evaluation
                    let mut context = HashMapContext::new();
                    for variable in tree.iter_variable_identifiers() {
                        let variable_value = dbg!(self.value(variable)?.ok_or_else(|| {
                            panic!();
                            SymbolError::WrongSymbol(variable.into())
                        }))?;
                        context
                            .set_value(variable.to_owned(), variable_value.clone().into())
                            .unwrap();
                    }

                    // evaluate the expression
                    let res = tree
                        .eval_with_context(&context)
                        .map_err(|_e| SymbolError::CannotModify(local_expr.into()))?;

                    res.to_string()
                }
            };
            symbol = symbol.replace(model, &local_value);
        }

        // Local symbols are expensed with their global symbol
        if symbol.starts_with('.') {
            symbol = self.current_global_label.clone().value().to_owned() + &symbol;
        }

        // handle the hidden labels from repeats
        if symbol.starts_with('@') {
            match self.seed_stack.last() {
                Some(seed) => {
                    // we need to rewrite the symbol name to make it unique
                    symbol = format!(".__hidden__{}__{}", seed, &symbol[1..]);
                }
                None => {
                    // we cannot have a symbol with @ here
                    return Err(SymbolError::WrongSymbol(symbol.into()));
                }
            }
        }

        Ok(symbol.into())
    }
}

/// Module handling code
impl SymbolsTable {
    /// Retrieve the map for the currently selected module
    fn current_module_map(&self) -> &ModuleSymbolTable {
        if self.namespace_stack.is_empty() {
            &self.map
        }
        else {
            self.module_map(&self.namespace_stack)
        }
    }

    /// Retrieve the mutable map for the currently selected module
    fn current_module_map_mut(&mut self) -> &mut ModuleSymbolTable {
        if self.namespace_stack.is_empty() {
            &mut self.map
        }
        else {
            let stack = self.namespace_stack.clone();
            self.module_map_mut(&stack)
        }
    }

    /// Retreive the map for the requested module
    fn module_map(&self, namespace: &[Symbol]) -> &ModuleSymbolTable {
        let mut current_map = &self.map;
        for current_namespace in namespace.iter() {
            current_map = current_map.children(current_namespace).unwrap();
        }
        current_map
    }

    fn module_map_mut(&mut self, namespace: &[Symbol]) -> &mut ModuleSymbolTable {
        let mut current_map = &mut self.map;
        for current_namespace in namespace.iter() {
            current_map = current_map.children_mut(current_namespace).unwrap();
        }
        current_map
    }

    /// Split the namespaces of the symbol
    fn split_namespaces(symbol: &Symbol) -> Vec<Symbol> {
        symbol
            .value()
            .split(':')
            .map(|s| s.to_owned())
            .map(|s| s.into())
            .collect_vec()
    }
}

impl SymbolsTableTrait for SymbolsTable {
    fn expression_symbol(&self) -> Vec<(&Symbol, &Value)> {
        self.map
            .iter()
            .filter(|(_k, v)| {
                match v {
                    Value::Expr(_) | Value::Address(_) => true,
                    _ => false
                }
            })
            .collect_vec()
    }

    fn int_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<i32>, SymbolError> {
        Ok(self.value(symbol)?.and_then(|v| v.integer()).or({
            if self.dummy {
                Some(1i32)
            }
            else {
                None
            }
        }))
    }

    fn assign_symbol_to_value<S: Into<Symbol>, V: Into<Value>>(
        &mut self,
        symbol: S,
        value: V
    ) -> Result<Option<Value>, SymbolError> {
        let symbol = self.extend_readable_symbol(symbol)?;

        if !self.assignable.contains(&symbol) && self.map.contains_key(&symbol) {
            return Err(SymbolError::CannotModify(symbol));
        }

        self.assignable.insert(symbol.clone());

        let value = value.into();
        self.current_pass_map.insert(symbol.clone(), value.clone());
        Ok(self.map.insert(symbol, value))
    }

    fn enter_namespace(&mut self, namespace: &str) {
        self.namespace_stack.push(namespace.into())
    }

    fn leave_namespace(&mut self) -> Result<Symbol, SymbolError> {
        match self.namespace_stack.pop() {
            Some(s) => Ok(s),
            None => Err(SymbolError::NoNamespaceActive)
        }
    }

    /// Returns the Value at the given key
    fn value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Value>, SymbolError> {
        let symbol = self.extend_readable_symbol(symbol)?;
        Ok(self.map.get(&symbol))
    }

    fn counter_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<i32>, SymbolError> {
        Ok(self
            .value(symbol.into())?
            .map(|v| v.counter())
            .map(|v| v.unwrap())
            .or({
                if self.dummy {
                    Some(1i32)
                }
                else {
                    None
                }
            }))
    }

    fn macro_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Macro>, SymbolError> {
        Ok(self.value(symbol)?.map(|v| v.r#macro()).unwrap_or(None))
    }

    fn struct_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Struct>, SymbolError> {
        Ok(self.value(symbol)?.map(|v| v.r#struct()).unwrap_or(None))
    }

    fn address_value<S: Into<Symbol>>(
        &self,
        symbol: S
    ) -> Result<Option<&PhysicalAddress>, SymbolError> {
        Ok(self.value(symbol)?.map(|v| v.address()).unwrap_or(None))
    }

    /// Remove the given symbol name from the table. (used by undef)
    fn remove_symbol<S: Into<Symbol>>(&mut self, symbol: S) -> Result<Option<Value>, SymbolError> {
        let symbol = self.extend_readable_symbol(symbol)?;
        Ok(self.map.remove(&symbol))
    }

    fn is_used<S: Into<Symbol>>(&self, symbol: S) -> bool {
        let symbol = self.extend_readable_symbol(symbol).unwrap();
        self.used_symbols.contains(&symbol)
    }

    fn use_symbol<S: Into<Symbol>>(&mut self, symbol: S) {
        let symbol = self.extend_readable_symbol(symbol).unwrap();
        self.used_symbols.insert(symbol);
    }
}

#[allow(missing_docs)]
impl SymbolsTable {
    pub fn laxist() -> Self {
        let mut map = ModuleSymbolTable::default();
        map.insert(Symbol::from("$"), Value::Expr(0.into()));
        Self {
            map: map.clone(),
            current_pass_map: map.clone(),
            dummy: true,
            current_global_label: "".into(),
            assignable: HashSet::new(),
            seed_stack: Vec::new(),
            namespace_stack: Vec::new(),
            used_symbols: HashSet::new()
        }
    }

    /// Add a new seed for the @ symbol name resolution (we enter in a repeat)
    pub fn push_seed(&mut self, seed: usize) {
        self.seed_stack.push(seed)
    }

    /// Remove the previous seed for the @ symbol name resolution (<e leave a repeat)
    pub fn pop_seed(&mut self) {
        self.seed_stack.pop();
    }

    /// Symbol is either :
    /// - a global symbol from the current module
    /// - or a fully qualified that represents a module from the start
    pub fn get_potential_candidates(&self, symbol: Symbol) -> SmallVec<[Symbol; 2]> {
        if symbol.value().starts_with("::") {
            smallvec![symbol.value()[2..].to_owned().into()]
        }
        else if self.namespace_stack.is_empty() {
            smallvec![symbol]
        }
        else {
            let full = symbol.clone();

            let _global = self.namespace_stack.clone();
            let global = self.inject_current_namespace(symbol);

            smallvec![global, full]
        }
    }

    fn inject_current_namespace<S: Into<Symbol>>(&self, symbol: S) -> Symbol {
        let mut global = self.namespace_stack.clone();
        global.push(symbol.into());
        global.iter().join(".").into()
    }

    fn extend_readable_symbol<S: Into<Symbol>>(&self, symbol: S) -> Result<Symbol, SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let candidates = self.get_potential_candidates(symbol);

        if candidates.len() == 1 {
            Ok(candidates[0].clone())
        }
        else if self.map.contains_key(&candidates[0]) {
            Ok(candidates[0].clone())
        }
        else {
            Ok(candidates[1].clone())
        }
    }

    fn extend_writable_symbol<S: Into<Symbol>>(&self, symbol: S) -> Result<Symbol, SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let candidates = self.get_potential_candidates(symbol);

        Ok(candidates[0].clone())
    }

    /// Return the current addres if it is known or return an error
    pub fn current_address(&self) -> Result<u16, SymbolError> {
        match self.value("$")? {
            Some(address) => Ok(address.integer().unwrap() as u16),
            None => Err(SymbolError::UnknownAssemblingAddress)
        }
    }

    /// Update `$` value
    pub fn set_current_address(&mut self, address: PhysicalAddress) {
        self.map.insert("$".into(), Value::Address(address));
    }

    pub fn set_current_output_address(&mut self, address: PhysicalAddress) {
        self.map.insert("$$".into(), Value::Address(address));
    }

    /// Set the given symbol to $ value
    pub fn set_symbol_to_current_address<S: Into<Symbol>>(
        &mut self,
        symbol: S
    ) -> Result<(), SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let symbol = self.extend_readable_symbol(symbol)?;
        self.current_address().map(|val| {
            let value = Value::Expr(val.into());
            self.map.insert(symbol.clone(), value.clone());
            self.current_pass_map.insert(symbol, value);
        })
    }

    /// Set the given Value to the given value
    /// Return the previous value if any
    pub fn set_symbol_to_value<S: Into<Symbol>, V: Into<Value>>(
        &mut self,
        symbol: S,
        value: V
    ) -> Result<Option<Value>, SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let symbol = self.inject_current_namespace(symbol);

        let value = value.into();
        self.current_pass_map.insert(symbol.clone(), value.clone());

        Ok(self.map.insert(symbol, value))
    }

    pub fn update_symbol_to_value<S: Into<Symbol>, V: Into<Value>>(
        &mut self,
        symbol: S,
        value: V
    ) -> Result<(), SymbolError> {
        let symbol = self.extend_readable_symbol(symbol)?;
        let symbols = self.get_potential_candidates(symbol);
        let symbol = symbols
            .iter()
            .find(|symbol| self.map.contains_key(symbol))
            .unwrap();

        let value = value.into();

        self.current_pass_map.insert(symbol.clone(), value.clone());

        *(self.map.get_mut(symbol).unwrap()) = value;

        Ok(())
    }

    /// Instead of returning the value, return the bank information
    /// logic stolen to rasm
    pub fn prefixed_value<S: Into<Symbol>>(
        &self,
        prefix: &LabelPrefix,
        key: S
    ) -> Result<Option<u16>, SymbolError> {
        let key = key.into();
        let addr = self.address_value(key)?;
        Ok(addr.map(|v| {
            match prefix {
                LabelPrefix::Bank => v.bank() as u16,
                LabelPrefix::Page => v.ga_bank() & 0x00ff,
                LabelPrefix::Pageset => v.ga_page() & 0x00ff, // delete 0x7f00
            }
        } as _))

        // Ok(match prefix {
        // LabelPrefix::Bank => Some(bank as _),
        //
        // LabelPrefix::Page => {
        // if page == 0 {
        // Some(0x7fc0)
        // } else {
        // Some(0x7FC4 + (bank & 3) + ((bank & 31) >> 2) * 8 - 0x100 * (bank >> 5))
        // }
        // }
        //
        // LabelPrefix::Pageset => {
        // if page == 0 {
        // Some(0x7fc0)
        // } else {
        // Some(0x7FC2 + ((bank & 31) >> 2) * 8 - 0x100 * (bank >> 5))
        // }
        // }
        // })
    }

    /// Check if the symbol table contains the expected symbol, whatever is the pass
    pub fn contains_symbol<S: Into<Symbol>>(&self, symbol: S) -> Result<bool, SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let symbols = self.get_potential_candidates(symbol);
        Ok(symbols.iter().any(|symbol| self.map.contains_key(symbol)))
    }

    /// Check if the symbol table contains the expected symbol, added during the current pass
    pub fn symbol_exist_in_current_pass<S: Into<Symbol>>(
        &self,
        symbol: S
    ) -> Result<bool, SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let symbols = self.get_potential_candidates(symbol);
        Ok(symbols
            .iter()
            .any(|symbol| self.current_pass_map.contains_key(symbol)))
    }

    /// Returns the closest Value
    pub fn closest_symbol<S: Into<Symbol>>(
        &self,
        symbol: S,
        r#for: SymbolFor
    ) -> Result<Option<SmolStr>, SymbolError> {
        let symbol = self.extend_local_and_patterns_for_symbol(symbol)?;
        let symbol = self.extend_readable_symbol(symbol)?;
        #[cfg(not(target_arch = "wasm32"))]
        let iter = self.map.par_iter();
        #[cfg(target_arch = "wasm32")]
        let iter = self.map.iter();

        Ok(iter
            .filter(|(_k, v)| {
                match (v, r#for) {
                    (Value::Expr(_), SymbolFor::Number)
                    | (Value::Expr(_), SymbolFor::Address)
                    | (Value::Address(_), SymbolFor::Address)
                    | (Value::Address(_), SymbolFor::Number)
                    | (Value::Macro(_), SymbolFor::Macro)
                    | (Value::Struct(_), SymbolFor::Struct)
                    | (Value::Counter(_), SymbolFor::Counter)
                    | (_, SymbolFor::Any) => true,
                    _ => false
                }
            })
            .map(|(k, _v)| k)
            .map(move |symbol2| {
                let symbol_upper = symbol.0.to_ascii_uppercase();
                let symbol2_upper = symbol2.0.to_ascii_uppercase();
                let levenshtein_distance = strsim::levenshtein(&symbol2.0, &symbol.0)
                    .min(strsim::levenshtein(&symbol2_upper, &symbol_upper));
                let included = if symbol2_upper.contains(&symbol_upper) {
                    0
                }
                else {
                    1
                };

                ((included, levenshtein_distance), symbol2.0.clone())
            })
            .min()
            .map(|(_distance, symbol2)| symbol2))
    }

    pub fn kind<S: Into<Symbol>>(&self, symbol: S) -> Result<&'static str, SymbolError> {
        Ok(match self.value(symbol)? {
            Some(Value::Expr(_)) => "number",
            Some(Value::Address(_)) => "address",
            Some(Value::Macro(_)) => "macro",
            Some(Value::Struct(_)) => "struct",
            Some(Value::Counter(_)) => "counter",
            Some(Value::String(_)) => "string",
            None => "any"
        })
    }
}

/// Wrapper around the Values table in order to easily manage the fact that the assembler is case dependent or independant
#[derive(Debug, Clone)]
#[allow(missing_docs)]
pub struct SymbolsTableCaseDependent {
    table: SymbolsTable,
    case_sensitive: bool
}

/// By default, the assembler is case sensitive
impl Default for SymbolsTableCaseDependent {
    fn default() -> Self {
        Self {
            table: SymbolsTable::default(),
            case_sensitive: true
        }
    }
}

impl AsRef<SymbolsTable> for SymbolsTableCaseDependent {
    fn as_ref(&self) -> &SymbolsTable {
        &self.table
    }
}

#[allow(missing_docs)]
impl SymbolsTableCaseDependent {
    delegate! {
        to self.table {
            pub fn current_address(&self) -> Result<u16, SymbolError>;
            pub fn set_current_address(&mut self, addr: PhysicalAddress);
            pub fn set_current_output_address(&mut self, addr: PhysicalAddress);
            pub fn closest_symbol<S: Into<Symbol>>(&self, symbol: S, r#for: SymbolFor) -> Result<Option<SmolStr>, SymbolError>;
            pub fn push_seed(&mut self, seed: usize);
            pub fn pop_seed(&mut self);
        }
    }

    pub fn new(table: SymbolsTable, case_sensitive: bool) -> Self {
        Self {
            table,
            case_sensitive
        }
    }

    pub fn is_case_sensitive(&self) -> bool {
        self.case_sensitive
    }

    pub fn table(&self) -> &SymbolsTable {
        &self.table
    }

    /// Build a laxists vesion of the table : do not care of case and absences of Valuees
    pub fn laxist() -> Self {
        Self::new(SymbolsTable::laxist(), false)
    }

    /// Modify the Value value depending on the case confurigration (do nothing, or set uppercase)
    pub fn normalize_symbol<S: Into<Symbol>>(&self, symbol: S) -> Symbol {
        if self.case_sensitive {
            symbol.into()
        }
        else {
            symbol.into().to_uppercase()
        }
    }

    pub fn set_table(&mut self, table: SymbolsTable) {
        self.table = table
    }

    // Setup the current label for local to global labels conversions
    pub fn set_current_label<S: Into<Symbol>>(&mut self, symbol: S) -> Result<(), SymbolError> {
        self.table
            .set_current_global_label(self.normalize_symbol(symbol))
    }

    pub fn set_symbol_to_current_address<S: Into<Symbol>>(
        &mut self,
        symbol: S
    ) -> Result<(), SymbolError> {
        self.table
            .set_symbol_to_current_address(self.normalize_symbol(symbol))
    }

    pub fn set_symbol_to_value<S: Into<Symbol>, V: Into<Value>>(
        &mut self,
        symbol: S,
        value: V
    ) -> Result<Option<Value>, SymbolError> {
        self.table
            .set_symbol_to_value(self.normalize_symbol(symbol), value)
    }

    pub fn update_symbol_to_value<S: Into<Symbol>, E: Into<Value>>(
        &mut self,
        symbol: S,
        value: E
    ) -> Result<(), SymbolError> {
        self.table
            .update_symbol_to_value(self.normalize_symbol(symbol), value.into())
    }

    pub fn prefixed_value<S: Into<Symbol>>(
        &self,
        prefix: &LabelPrefix,
        symbol: S
    ) -> Result<Option<u16>, SymbolError> {
        self.table
            .prefixed_value(prefix, self.normalize_symbol(symbol))
    }

    pub fn contains_symbol<S: Into<Symbol>>(&self, symbol: S) -> Result<bool, SymbolError> {
        self.table.contains_symbol(self.normalize_symbol(symbol))
    }

    pub fn symbol_exist_in_current_pass<S: Into<Symbol>>(
        &self,
        symbol: S
    ) -> Result<bool, SymbolError> {
        self.table
            .symbol_exist_in_current_pass(self.normalize_symbol(symbol))
    }

    pub fn new_pass(&mut self) {
        self.table.new_pass();
    }

    pub fn kind<S: Into<Symbol>>(&self, symbol: S) -> Result<&'static str, SymbolError> {
        self.table.kind(symbol)
    }
}

impl SymbolsTableTrait for SymbolsTableCaseDependent {
    fn is_used<S: Into<Symbol>>(&self, symbol: S) -> bool {
        self.table.is_used(self.normalize_symbol(symbol))
    }

    fn use_symbol<S: Into<Symbol>>(&mut self, symbol: S) {
        self.table.use_symbol(self.normalize_symbol(symbol))
    }

    fn expression_symbol(&self) -> Vec<(&Symbol, &Value)> {
        self.table.expression_symbol()
    }

    fn int_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<i32>, SymbolError> {
        self.table.int_value(self.normalize_symbol(symbol))
    }

    fn counter_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<i32>, SymbolError> {
        self.table.counter_value(self.normalize_symbol(symbol))
    }

    fn macro_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Macro>, SymbolError> {
        self.table.macro_value(self.normalize_symbol(symbol))
    }

    fn struct_value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Struct>, SymbolError> {
        self.table.struct_value(self.normalize_symbol(symbol))
    }

    fn value<S: Into<Symbol>>(&self, symbol: S) -> Result<Option<&Value>, SymbolError> {
        self.table.value(self.normalize_symbol(symbol))
    }

    fn remove_symbol<S: Into<Symbol>>(&mut self, symbol: S) -> Result<Option<Value>, SymbolError> {
        self.table.remove_symbol(self.normalize_symbol(symbol))
    }

    fn address_value<S: Into<Symbol>>(
        &self,
        symbol: S
    ) -> Result<Option<&PhysicalAddress>, SymbolError> {
        self.table.address_value(self.normalize_symbol(symbol))
    }

    fn assign_symbol_to_value<S: Into<Symbol>, V: Into<Value>>(
        &mut self,
        symbol: S,
        value: V
    ) -> Result<Option<Value>, SymbolError> {
        self.table
            .assign_symbol_to_value(self.normalize_symbol(symbol), value)
    }

    fn enter_namespace(&mut self, namespace: &str) {
        self.table
            .enter_namespace(self.normalize_symbol(namespace).value())
    }

    fn leave_namespace(&mut self) -> Result<Symbol, SymbolError> {
        self.table.leave_namespace()
    }
}