1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
use std::collections::BTreeMap;
use std::fmt;
#[cfg(feature = "iterator")]
use std::iter;
#[cfg(feature = "iterator")]
use std::ops::{Bound, RangeBounds};

#[cfg(feature = "iterator")]
use crate::iterator::{Order, Record};
use crate::traits::Storage;

#[derive(Default)]
pub struct MemoryStorage {
    data: BTreeMap<Vec<u8>, Vec<u8>>,
}

impl MemoryStorage {
    pub fn new() -> Self {
        MemoryStorage::default()
    }
}

impl Storage for MemoryStorage {
    fn get(&self, key: &[u8]) -> Option<Vec<u8>> {
        self.data.get(key).cloned()
    }

    fn set(&mut self, key: &[u8], value: &[u8]) {
        if value.is_empty() {
            panic!("TL;DR: Value must not be empty in Storage::set but in most cases you can use Storage::remove instead. Long story: Getting empty values from storage is not well supported at the moment. Some of our internal interfaces cannot differentiate between a non-existent key and an empty value. Right now, you cannot rely on the behaviour of empty values. To protect you from trouble later on, we stop here. Sorry for the inconvenience! We highly welcome you to contribute to CosmWasm, making this more solid one way or the other.");
        }

        self.data.insert(key.to_vec(), value.to_vec());
    }

    fn remove(&mut self, key: &[u8]) {
        self.data.remove(key);
    }

    #[cfg(feature = "iterator")]
    /// range allows iteration over a set of keys, either forwards or backwards
    /// uses standard rust range notation, and eg db.range(b"foo"..b"bar") also works reverse
    fn range<'a>(
        &'a self,
        start: Option<&[u8]>,
        end: Option<&[u8]>,
        order: Order,
    ) -> Box<dyn Iterator<Item = Record> + 'a> {
        let bounds = range_bounds(start, end);

        // BTreeMap.range panics if range is start > end.
        // However, this cases represent just empty range and we treat it as such.
        match (bounds.start_bound(), bounds.end_bound()) {
            (Bound::Included(start), Bound::Excluded(end)) if start > end => {
                return Box::new(iter::empty());
            }
            _ => {}
        }

        let iter = self.data.range(bounds);
        match order {
            Order::Ascending => Box::new(iter.map(clone_item)),
            Order::Descending => Box::new(iter.rev().map(clone_item)),
        }
    }
}

/// This debug implementation is made for inspecting storages in unit testing.
/// It is made for human readability only and the output can change at any time.
impl fmt::Debug for MemoryStorage {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "MemoryStorage ({} entries)", self.data.len())?;
        f.write_str(" {\n")?;
        for (key, value) in &self.data {
            f.write_str("  0x")?;
            for byte in key {
                write!(f, "{:02x}", byte)?;
            }
            f.write_str(": 0x")?;
            for byte in value {
                write!(f, "{:02x}", byte)?;
            }
            f.write_str("\n")?;
        }
        f.write_str("}")?;
        Ok(())
    }
}

#[cfg(feature = "iterator")]
fn range_bounds(start: Option<&[u8]>, end: Option<&[u8]>) -> impl RangeBounds<Vec<u8>> {
    (
        start.map_or(Bound::Unbounded, |x| Bound::Included(x.to_vec())),
        end.map_or(Bound::Unbounded, |x| Bound::Excluded(x.to_vec())),
    )
}

#[cfg(feature = "iterator")]
/// The BTreeMap specific key-value pair reference type, as returned by BTreeMap<Vec<u8>, Vec<u8>>::range.
/// This is internal as it can change any time if the map implementation is swapped out.
type BTreeMapRecordRef<'a> = (&'a Vec<u8>, &'a Vec<u8>);

#[cfg(feature = "iterator")]
fn clone_item(item_ref: BTreeMapRecordRef) -> Record {
    let (key, value) = item_ref;
    (key.clone(), value.clone())
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn get_and_set() {
        let mut store = MemoryStorage::new();
        assert_eq!(store.get(b"foo"), None);
        store.set(b"foo", b"bar");
        assert_eq!(store.get(b"foo"), Some(b"bar".to_vec()));
        assert_eq!(store.get(b"food"), None);
    }

    #[test]
    #[should_panic(
        expected = "Getting empty values from storage is not well supported at the moment."
    )]
    fn set_panics_for_empty() {
        let mut store = MemoryStorage::new();
        store.set(b"foo", b"");
    }

    #[test]
    fn delete() {
        let mut store = MemoryStorage::new();
        store.set(b"foo", b"bar");
        store.set(b"food", b"bank");
        store.remove(b"foo");

        assert_eq!(store.get(b"foo"), None);
        assert_eq!(store.get(b"food"), Some(b"bank".to_vec()));
    }

    #[test]
    #[cfg(feature = "iterator")]
    fn iterator() {
        let mut store = MemoryStorage::new();
        store.set(b"foo", b"bar");

        // ensure we had previously set "foo" = "bar"
        assert_eq!(store.get(b"foo"), Some(b"bar".to_vec()));
        assert_eq!(store.range(None, None, Order::Ascending).count(), 1);

        // setup - add some data, and delete part of it as well
        store.set(b"ant", b"hill");
        store.set(b"ze", b"bra");

        // noise that should be ignored
        store.set(b"bye", b"bye");
        store.remove(b"bye");

        // unbounded
        {
            let iter = store.range(None, None, Order::Ascending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(
                elements,
                vec![
                    (b"ant".to_vec(), b"hill".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ze".to_vec(), b"bra".to_vec()),
                ]
            );
        }

        // unbounded (descending)
        {
            let iter = store.range(None, None, Order::Descending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(
                elements,
                vec![
                    (b"ze".to_vec(), b"bra".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }

        // bounded
        {
            let iter = store.range(Some(b"f"), Some(b"n"), Order::Ascending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(elements, vec![(b"foo".to_vec(), b"bar".to_vec())]);
        }

        // bounded (descending)
        {
            let iter = store.range(Some(b"air"), Some(b"loop"), Order::Descending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }

        // bounded empty [a, a)
        {
            let iter = store.range(Some(b"foo"), Some(b"foo"), Order::Ascending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, a) (descending)
        {
            let iter = store.range(Some(b"foo"), Some(b"foo"), Order::Descending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, b) with b < a
        {
            let iter = store.range(Some(b"z"), Some(b"a"), Order::Ascending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(elements, vec![]);
        }

        // bounded empty [a, b) with b < a (descending)
        {
            let iter = store.range(Some(b"z"), Some(b"a"), Order::Descending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(elements, vec![]);
        }

        // right unbounded
        {
            let iter = store.range(Some(b"f"), None, Order::Ascending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ze".to_vec(), b"bra".to_vec()),
                ]
            );
        }

        // right unbounded (descending)
        {
            let iter = store.range(Some(b"f"), None, Order::Descending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(
                elements,
                vec![
                    (b"ze".to_vec(), b"bra".to_vec()),
                    (b"foo".to_vec(), b"bar".to_vec()),
                ]
            );
        }

        // left unbounded
        {
            let iter = store.range(None, Some(b"f"), Order::Ascending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(elements, vec![(b"ant".to_vec(), b"hill".to_vec()),]);
        }

        // left unbounded (descending)
        {
            let iter = store.range(None, Some(b"no"), Order::Descending);
            let elements: Vec<Record> = iter.collect();
            assert_eq!(
                elements,
                vec![
                    (b"foo".to_vec(), b"bar".to_vec()),
                    (b"ant".to_vec(), b"hill".to_vec()),
                ]
            );
        }
    }

    #[test]
    fn memory_storage_implements_debug() {
        let store = MemoryStorage::new();
        assert_eq!(
            format!("{:?}", store),
            "MemoryStorage (0 entries) {\n\
            }"
        );

        // With one element
        let mut store = MemoryStorage::new();
        store.set(&[0x00, 0xAB, 0xDD], &[0xFF, 0xD5]);
        assert_eq!(
            format!("{:?}", store),
            "MemoryStorage (1 entries) {\n\
            \x20\x200x00abdd: 0xffd5\n\
            }"
        );

        // Sorted by key
        let mut store = MemoryStorage::new();
        store.set(&[0x00, 0xAB, 0xDD], &[0xFF, 0xD5]);
        store.set(&[0x00, 0xAB, 0xEE], &[0xFF, 0xD5]);
        store.set(&[0x00, 0xAB, 0xCC], &[0xFF, 0xD5]);
        assert_eq!(
            format!("{:?}", store),
            "MemoryStorage (3 entries) {\n\
            \x20\x200x00abcc: 0xffd5\n\
            \x20\x200x00abdd: 0xffd5\n\
            \x20\x200x00abee: 0xffd5\n\
            }"
        );

        // Different lengths
        let mut store = MemoryStorage::new();
        store.set(&[0xAA], &[0x11]);
        store.set(&[0xAA, 0xBB], &[0x11, 0x22]);
        store.set(&[0xAA, 0xBB, 0xCC], &[0x11, 0x22, 0x33]);
        store.set(&[0xAA, 0xBB, 0xCC, 0xDD], &[0x11, 0x22, 0x33, 0x44]);
        assert_eq!(
            format!("{:?}", store),
            "MemoryStorage (4 entries) {\n\
            \x20\x200xaa: 0x11\n\
            \x20\x200xaabb: 0x1122\n\
            \x20\x200xaabbcc: 0x112233\n\
            \x20\x200xaabbccdd: 0x11223344\n\
            }"
        );
    }
}