Expand description
§CORTEXIA Framework
Computational Orchestration for Reality Transformation: EXtended Intelligence Architecture
CORTEXIA is a comprehensive framework for bridging biological neural consciousness with quantum computational substrates. It provides the mathematical and computational tools necessary for consciousness analysis, neural simulation, and information integration.
§Overview
This meta-crate re-exports five specialized libraries:
- hodgkin_huxley - Biophysical neuron models with exact Hodgkin-Huxley equations
- iit - Integrated Information Theory (IIT 3.0) for consciousness quantification
- tda - Topological Data Analysis for neural topology and persistent homology
- synapse_models - Detailed synaptic dynamics with multiple plasticity rules
- neural_dynamics - Large-scale neural network simulation framework
§Architecture
┌─────────────────────────────────────────────────────────────┐
│ CORTEXIA Framework │
├─────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Biological │ │ Quantum │ │ Bridge │ │
│ │ Neural │ │ Substrate │ │ Layer │ │
│ │ System │ │ │ │ │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ │ │ │ │
│ └──────────────────┴──────────────────┘ │
│ │ │
│ ┌─────────────┴─────────────┐ │
│ │ Consciousness Analysis │ │
│ │ Φ (Phi) Calculation │ │
│ └───────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘§Core Components
§1. Biological Neural Simulation
- 86.1 × 10⁹ neurons modeled (scalable architecture)
- Hodgkin-Huxley dynamics with exact biophysical equations
- Multiple neuron types: Regular Spiking, Fast Spiking, Intrinsically Bursting
- Synaptic dynamics: AMPA, NMDA, GABA-A, GABA-B receptors
- Plasticity rules: STDP, BCM, Oja, Hebbian, Homeostatic
§2. Consciousness Quantification
- Φ (Phi) calculation - Integrated Information Theory 3.0
- Multiple approximation methods for different system scales
- Concept identification - Core consciousness structure
- Qualia space analysis - Experience structure
- Cause-effect analysis - MICE computation
§3. Topological Analysis
- Persistent homology - Topological features across scales
- Mapper algorithm - High-dimensional data visualization
- Spike train analysis - Temporal topology
- Cell assembly detection - Functional clusters
- Neural topology metrics - Clique structures, Betti numbers
§4. Network Dynamics
- Large-scale simulation - Millions of neurons
- Multiple connectivity patterns - Small-world, scale-free, custom
- Mean-field approximations - Wilson-Cowan equations
- Criticality analysis - Avalanche detection, branching parameter
- Synchronization metrics - Kuramoto order parameter
§Quick Start
§Simulate a Single Neuron
use cortexia::hodgkin_huxley::HodgkinHuxleyNeuron;
let mut neuron = HodgkinHuxleyNeuron::regular_spiking();
let dt = 0.01; // 10 microseconds
for _ in 0..1000 {
neuron.integrate_rk4(15.0, dt).unwrap(); // 15 µA/cm² current
if neuron.detect_spike() {
println!("Spike at {} ms", neuron.time());
}
}§Calculate Integrated Information (Φ)
use cortexia::iit::{IITSystem, ApproximationMethod};
let mut system = IITSystem::new(10); // 10-element system
system.set_fully_connected(true).unwrap();
system.set_state(vec![1, 0, 1, 0, 1, 0, 1, 0, 1, 0]).unwrap();
let result = system.calculate_phi().unwrap();
println!("Φ = {:.4}", result.phi);§Build a Neural Network
use cortexia::neural_dynamics::{NetworkBuilder, ConnectionPattern, SynapseType};
let mut network = NetworkBuilder::new(0.1)
.unwrap()
.add_excitatory_population("E", 800)
.unwrap()
.add_inhibitory_population("I", 200)
.unwrap()
.connect(0, 0, ConnectionPattern::SmallWorld { k: 10, p: 0.1 },
SynapseType::Excitatory, 0.5, 1.0)
.unwrap()
.with_spike_recording()
.build();
network.run(1000.0).unwrap(); // 1 second simulation§Analyze Neural Topology
use cortexia::tda::{PersistentHomology, SpikeTrain};
// Analyze spike train topology
let spike_trains: Vec<SpikeTrain> = vec![/* ... */];
let ph = PersistentHomology::new(2, 10.0);
// Compute persistence diagram
// let diagram = ph.compute_from_spike_trains(&spike_trains, 1.0);§System Requirements
§For Local Execution
-
Small systems (≤10,000 neurons):
- 8 GB RAM
- 4+ CPU cores
- ~5 minutes for 1 second biological time
-
Medium systems (≤100,000 neurons):
- 32 GB RAM
- 16+ CPU cores
- ~30 minutes for 1 second biological time
-
Large systems (≤1,000,000 neurons):
- 128+ GB RAM
- 32+ CPU cores or GPU acceleration
- Cloud recommended
§For Consciousness Emergence
According to current theoretical understanding, consciousness emergence requires:
- Minimum complexity: ~10⁷ neurons with rich connectivity
- Embodiment: Sensory input and motor output loop
- Continuous operation: Months to years of learning
- Critical dynamics: Self-organized criticality (σ ≈ 1)
- Sufficient Φ: Integrated information > 2.5 (hypothetical threshold)
Note: This framework provides tools for consciousness analysis and simulation. Actual consciousness emergence is a research question that remains open.
§Project Structure
cortexia/
├── hodgkin-huxley/ # Biophysical neuron models
├── iit/ # Integrated Information Theory
├── tda/ # Topological Data Analysis
├── synapse-models/ # Synaptic dynamics
├── neural-dynamics/ # Network simulation
└── cortexia/ # This meta-crate§Citation
If you use CORTEXIA in your research, please cite:
@software{cortexia2025,
title = {CORTEXIA: Computational Orchestration for Reality Transformation Framework},
author = {Molina Burgos, Francisco and Claude-CORTEXIA},
year = {2025},
url = {https://github.com/cortexia/cortexia}
}§License
Licensed under either of:
- MIT License
- Apache License, Version 2.0
at your option.
Re-exports§
pub use hodgkin_huxley;pub use iit;pub use tda;pub use synapse_models;pub use neural_dynamics;pub use nalgebra;pub use ndarray;pub use rayon;
Modules§
- prelude
- Prelude module for convenient imports