1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#![no_std]

use cortex_m::{asm, peripheral::MPU};

pub use arrayvec::ArrayVec;

fn update_mpu_unprivileged(mpu: &mut MPU, f: impl FnOnce(&mut MPU)) {
    const CTRL_ENABLE: u32 = 1 << 0;
    const _CTRL_HFNMIENA: u32 = 1 << 1;
    const CTRL_PRIVDEFENA: u32 = 1 << 2;

    // Atomic MPU updates:
    // Turn off interrupts, turn off MPU, reconfigure, turn it back on, reenable interrupts.
    // Turning off interrupts is not needed when the old configuration only applied to
    // unprivileged thread code: The entire operation is interruptible, as long as the
    // processor is never made to run any other thread-mode code.

    // https://developer.arm.com/docs/dui0553/latest/cortex-m4-peripherals/optional-memory-protection-unit/updating-an-mpu-region
    asm::dsb();

    // Disable MPU while we update the regions
    unsafe {
        mpu.ctrl.write(0);
    }

    f(mpu);

    unsafe {
        // Enable MPU, but not for privileged code
        mpu.ctrl.write(CTRL_ENABLE | CTRL_PRIVDEFENA);
    }

    asm::dsb();
    asm::isb();
}

/// The Cortex-M0+ MPU.
pub mod cortex_m0p {
    use super::*;

    /// Wrapper around the Cortex-M0+ Memory Protection Unit (MPU).
    pub struct Mpu(MPU);

    impl Mpu {
        /// Number of supported memory regions.
        pub const REGION_COUNT: u8 = 8;

        const REGION_COUNT_USIZE: usize = Self::REGION_COUNT as usize;

        /// Creates a new MPU wrapper, taking ownership of the `MPU` peripheral.
        ///
        /// # Safety
        ///
        /// This function is safe to call if the processor is a Cortex-M0+ and has an MPU.
        pub unsafe fn new(raw: MPU) -> Self {
            Mpu(raw)
        }

        /// Consumes `self` and returns the raw MPU peripheral.
        pub fn into_inner(self) -> MPU {
            self.0
        }

        /// Configures the MPU to restrict access to software running in unprivileged mode.
        ///
        /// Any violation of the MPU settings will cause a *HardFault* exception. The Cortex-M0+
        /// does not have a dedicated memory management exception.
        ///
        /// Unprivileged code will only be allowed to access memory inside one of the given
        /// `regions`.
        ///
        /// Code running in privileged mode will not be restricted by the MPU, except that regions
        /// that have `executable` set to `false` will be marked as ***N**ever e**X**excute* (`NX`),
        /// which is enforced even for privileged code.
        pub fn configure_unprivileged(
            &mut self,
            regions: &ArrayVec<[Region; Self::REGION_COUNT_USIZE]>,
        ) {
            // Safety: This is safe because it does not affect the privileged code calling it.
            // Unprivileged, untrusted (non-Rust) code is always unsafe to call, so this doesn't
            // have to be unsafe as well. If called by unprivileged code, the register writes will
            // fault, which is also safe.

            update_mpu_unprivileged(&mut self.0, |mpu| {
                for (i, region) in regions.iter().enumerate() {
                    unsafe {
                        {
                            let addr = (region.base_addr as u32) & !0b11111;
                            let valid = 1 << 4;
                            let region = i as u32;
                            mpu.rbar.write(addr | valid | region);
                        }

                        {
                            let xn = if region.executable { 0 } else { 1 << 28 };
                            let ap = (region.permissions as u32) << 24;
                            let scb = region.attributes.to_bits() << 16;
                            let srd = u32::from(region.subregions.bits()) << 8;
                            let size = region.size.to_bits() << 1;
                            let enable = 1;

                            mpu.rasr.write(xn | ap | scb | srd | size | enable);
                        }
                    }
                }

                // Disable the remaining regions
                for i in regions.len()..usize::from(Self::REGION_COUNT) {
                    unsafe {
                        let addr = 0;
                        let valid = 1 << 4;
                        let region = i as u32;
                        mpu.rbar.write(addr | valid | region);

                        mpu.rasr.write(0); // disable region
                    }
                }
            });
        }
    }

    /// Memory region properties.
    #[derive(Debug, Copy, Clone)]
    pub struct Region {
        /// Starting address of the region (lowest address).
        ///
        /// This must be aligned to the region's `size`.
        pub base_addr: usize,
        /// Size of the region.
        pub size: Size,
        /// The subregions to enable or disable.
        pub subregions: Subregions,
        /// Whether to allow instruction fetches from this region.
        ///
        /// If this is `false`, the region will be marked as NX (Never eXecute).
        /// This affects both privileged and unprivileged code, regardless of
        /// other MPU settings.
        pub executable: bool,
        /// Data access permissions for the region.
        pub permissions: AccessPermission,
        /// Memory type and cache policy attributes.
        pub attributes: MemoryAttributes,
    }

    /// Size of a memory region.
    ///
    /// The Cortex-M MPUs only support this very limited number of size classes, and do not allow
    /// configuring an arbitrary memory region size.
    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum Size {
        /// 256 Bytes.
        S256B = 7,
        /// 1 KiB (1024 Bytes).
        S1K = 9,
        /// 1 MiB (1024 KiB, 1048576 Bytes).
        S1M = 19,
        /// 1 GiB.
        S1G = 29,
        /// 4 GiB (covering the entire memory space).
        S4G = 31,
    }

    impl Size {
        fn to_bits(self) -> u32 {
            self as u32
        }
    }

    /// Describes memory type, cache policy, and shareability.
    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum MemoryAttributes {
        /// Shareable, non-cached, strongly-ordered memory region.
        StronglyOrdered,

        /// Non-cached device peripheral region. Always considered shareable.
        Device,

        /// Normal memory region (ie. "actual" memory, such as Flash or SRAM).
        Normal {
            /// Whether the region is accessible by more than one bus master
            /// (eg. a DMA engine or a second MCU core).
            shareable: bool,

            /// Cache policy of the region.
            cache_policy: CachePolicy,
        },
    }

    impl MemoryAttributes {
        /// Turns `self` into its bit-level representation, in order `0bSCB`.
        fn to_bits(self) -> u32 {
            macro_rules! bits {
                ( C=$c:literal, B=$b:literal, S=$s:ident ) => {
                    (if $s { 1 } else { 0 } << 2) | ($c << 1) | $b
                };
                ( C=$c:literal, B=$b:literal, S=$s:literal ) => {
                    ($s << 2) | ($c << 1) | $b
                };
            }

            match self {
                Self::StronglyOrdered => bits!(C = 0, B = 0, S = 0),
                Self::Device => bits!(C = 0, B = 1, S = 0),
                Self::Normal {
                    shareable,
                    cache_policy,
                } => match cache_policy {
                    CachePolicy::WriteThrough => bits!(C = 1, B = 0, S = shareable),
                    CachePolicy::WriteBack => bits!(C = 1, B = 1, S = shareable),
                },
            }
        }
    }

    /// The caching policy for a "normal" memory region.
    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum CachePolicy {
        /// Write-through, no write allocate.
        WriteThrough,

        /// Write-back cacheable region, no write-allocate.
        WriteBack,
    }
}

/// The Cortex-M4 MPU.
pub mod cortex_m4 {
    use super::*;

    /// Wrapper around the Cortex-M4 Memory Protection Unit (MPU).
    pub struct Mpu(MPU);

    impl Mpu {
        /// Number of supported memory regions.
        pub const REGION_COUNT: u8 = 8;

        const REGION_COUNT_USIZE: usize = Self::REGION_COUNT as usize;

        /// Creates a new MPU wrapper, taking ownership of the `MPU` peripheral.
        ///
        /// # Safety
        ///
        /// This is safe to call if the processor is a Cortex-M4 or M4F and has an MPU.
        pub unsafe fn new(raw: MPU) -> Self {
            Mpu(raw)
        }

        /// Consumes `self` and returns the raw MPU peripheral.
        pub fn into_inner(self) -> MPU {
            self.0
        }

        /// Configures the MPU to restrict access to software running in unprivileged mode.
        ///
        /// Code running in privileged mode will not be restricted by the MPU.
        pub fn configure_unprivileged(
            &mut self,
            regions: &ArrayVec<[Region; Self::REGION_COUNT_USIZE]>,
        ) {
            // Safety: This is safe because it does not affect the privileged code calling it.
            // Unprivileged, untrusted (non-Rust) code is always unsafe to call, so this doesn't
            // have to be unsafe as well. If called by unprivileged code, the register writes will
            // fault, which is also safe.

            update_mpu_unprivileged(&mut self.0, |mpu| {
                for (i, region) in regions.iter().enumerate() {
                    unsafe {
                        {
                            let addr = (region.base_addr as u32) & !0b11111;
                            let valid = 1 << 4;
                            let region = i as u32;
                            mpu.rbar.write(addr | valid | region);
                        }

                        {
                            let xn = if region.executable { 0 } else { 1 << 28 };
                            let ap = (region.permissions as u32) << 24;
                            let texscb = region.attributes.to_bits() << 16;
                            // SRD bits are left cleared (all subregions enabled)
                            let size = region.size.to_bits() << 1;
                            let enable = 1;

                            mpu.rasr.write(xn | ap | texscb | size | enable);
                        }
                    }
                }

                // Disable the remaining regions
                for i in regions.len()..usize::from(Self::REGION_COUNT) {
                    unsafe {
                        let addr = 0;
                        let valid = 1 << 4;
                        let region = i as u32;
                        mpu.rbar.write(addr | valid | region);

                        mpu.rasr.write(0); // disable region
                    }
                }
            });
        }
    }

    /// Memory region properties.
    #[derive(Debug, Copy, Clone)]
    pub struct Region {
        /// Starting address of the region (lowest address).
        ///
        /// This must be aligned to the region's `size`.
        pub base_addr: usize,
        /// Size of the region.
        pub size: Size,
        /// Whether to allow instruction fetches from this region.
        ///
        /// If this is `false`, the region will be marked as NX (Never eXecute).
        /// This affects both privileged and unprivileged code, regardless of
        /// other MPU settings.
        pub executable: bool,
        /// Data access permissions for the region.
        pub permissions: AccessPermission,
        /// Memory type and cache policy attributes.
        pub attributes: MemoryAttributes,
    }

    /// Size of a memory region.
    ///
    /// The Cortex-M MPUs only support this very limited number of size classes, and do not allow
    /// configuring an arbitrary memory region size.
    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum Size {
        /// 32 Bytes.
        S32B = 4,
        /// 1 KiB (1024 Bytes).
        S1K = 9,
        /// 1 MiB (1024 KiB, 1048576 Bytes).
        S1M = 19,
        /// 1 GiB.
        S1G = 29,
        /// 4 GiB (covering the entire memory space).
        S4G = 31,
    }

    impl Size {
        fn to_bits(self) -> u32 {
            self as u32
        }
    }

    /// Describes memory type, cache policy, and shareability.
    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum MemoryAttributes {
        /// Shareable, non-cached, strongly-ordered memory region.
        StronglyOrdered,

        /// Non-cached device peripheral region.
        Device {
            /// Whether the region is accessible by more than one bus master (eg. a
            /// DMA engine or a second MCU core).
            shareable: bool,
        },

        /// Normal memory region (ie. "actual" memory, such as Flash or SRAM).
        Normal {
            /// Whether the region is accessible by more than one bus master (eg. a
            /// DMA engine or a second MCU core).
            shareable: bool,

            /// How this region should be cached (?).
            cache_policy: CachePolicy,
        },
    }

    impl MemoryAttributes {
        /// Turns `self` into its bit-level representation, consisting of the TEX, C, B, and S bits.
        fn to_bits(self) -> u32 {
            macro_rules! bits {
                ( TEX=$tex:literal, C=$c:literal, B=$b:literal, S=$s:ident ) => {
                    ($tex << 3) | (if $s { 1 } else { 0 } << 2) | ($c << 1) | $b
                };
                ( TEX=$tex:literal, C=$c:literal, B=$b:literal, S=$s:literal ) => {
                    ($tex << 3) | ($s << 2) | ($c << 1) | $b
                };
            }

            match self {
                Self::StronglyOrdered => bits!(TEX = 0b000, C = 0, B = 0, S = 0),
                Self::Device { shareable: false } => bits!(TEX = 0b010, C = 0, B = 0, S = 0),
                Self::Device { shareable: true } => bits!(TEX = 0b000, C = 0, B = 1, S = 0),
                Self::Normal {
                    shareable,
                    cache_policy,
                } => match cache_policy {
                    CachePolicy::NonCacheable => bits!(TEX = 0b001, C = 0, B = 0, S = shareable),
                    CachePolicy::WriteThrough => bits!(TEX = 0b000, C = 1, B = 0, S = shareable),
                    CachePolicy::WriteBack {
                        write_allocate: false,
                    } => bits!(TEX = 0b000, C = 1, B = 1, S = shareable),
                    CachePolicy::WriteBack {
                        write_allocate: true,
                    } => bits!(TEX = 0b001, C = 1, B = 1, S = shareable),
                },
            }
        }
    }

    /// The caching policy for a "normal" memory region.
    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    pub enum CachePolicy {
        /// Non-cacheable memory region.
        NonCacheable,

        /// Write-through, no write allocate.
        WriteThrough,

        /// Write-back cacheable region.
        WriteBack {
            /// Whether a write miss loads the missed cache row into cache.
            write_allocate: bool,
        },
        // FIXME: There's also mixed "outer"/"inner" policies, but I don't know what that even means.
    }
}

/// Data access permissions for a memory region from unprivileged code.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum AccessPermission {
    /// Any data access (read or write) will generate a fault.
    NoAccess = 0b01,

    /// Any write access will generate a fault.
    ReadOnly = 0b10,

    /// Region unprotected, both reads and writes are allowed.
    ReadWrite = 0b11,
}

/// Subregion Disable (SRD) bits for the 8 subregions in a region.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Subregions(u8);

impl Subregions {
    /// All 8 subregions are enabled.
    pub fn all() -> Self {
        Subregions(0)
    }

    /// None of the 8 subregions are enabled. Equivalent to disabling the entire region, which
    /// should be preferred.
    pub fn none() -> Self {
        Subregions(0xff)
    }

    /// Creates a `Subregions` mask from raw Subregion Disable (SRD) bits.
    ///
    /// The least significant bit disables the lowest 1/8th of the region, and so on.
    pub fn from_disable_bits(bits: u8) -> Self {
        Subregions(bits)
    }

    /// Returns the raw 8-bit Subregion Disable Bits value.
    pub fn bits(self) -> u8 {
        self.0
    }
}

impl Default for Subregions {
    fn default() -> Self {
        Self::all()
    }
}