1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
//! Interrupts

// use core::sync::atomic::{self, Ordering};

pub use bare_metal::{CriticalSection, Mutex, Nr};

/// Disables all interrupts
#[inline]
pub fn disable() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => unsafe {
            asm!("cpsid i" ::: "memory" : "volatile");
        },

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => unsafe {
            extern "C" {
                fn __cpsid();
            }

            // XXX do we need a explicit compiler barrier here?
            __cpsid();
        },

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Enables all the interrupts
///
/// # Safety
///
/// - Do not call this function inside an `interrupt::free` critical section
#[inline]
pub unsafe fn enable() {
    match () {
        #[cfg(all(cortex_m, feature = "inline-asm"))]
        () => asm!("cpsie i" ::: "memory" : "volatile"),

        #[cfg(all(cortex_m, not(feature = "inline-asm")))]
        () => {
            extern "C" {
                fn __cpsie();
            }

            // XXX do we need a explicit compiler barrier here?
            __cpsie();
        }

        #[cfg(not(cortex_m))]
        () => unimplemented!(),
    }
}

/// Execute closure `f` in an interrupt-free context.
///
/// This as also known as a "critical section".
pub fn free<F, R>(f: F) -> R
where
    F: FnOnce(&CriticalSection) -> R,
{
    let primask = crate::register::primask::read();

    // disable interrupts
    disable();

    let r = f(unsafe { &CriticalSection::new() });

    // If the interrupts were active before our `disable` call, then re-enable
    // them. Otherwise, keep them disabled
    if primask.is_active() {
        unsafe { enable() }
    }

    r
}