Expand description
Burn-based training and evaluation for CortenForge detection models.
This crate provides:
- Dataset loading and collation (
collate,collate_from_burn_batch). - Training loop utilities (
run_train,TrainArgs). - Model checkpoint loading/saving helpers.
Supports both LinearClassifier and MultiboxModel from the models crate.
§Backend Selection
backend-wgpu: Uses WGPU for GPU-accelerated training.- Default: Falls back to NdArray CPU backend.
§Stability
Training APIs are experimental and may change as the training pipeline evolves.
Core model types (TinyDet, BigDet) are stable, but training utilities and loss functions
are subject to refinement.
Re-exports§
pub use dataset::collate;pub use dataset::collate_from_burn_batch;pub use dataset::CollatedBatch;pub use dataset::DatasetPathConfig;pub use dataset::RunSample;pub use util::run_train;pub use util::TrainArgs;
Modules§
Structs§
Type Aliases§
- Train
Backend - Backend alias for training/eval (NdArray by default; WGPU if enabled).