1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
// Copyright (c) 2022-2023
// Author: Tommy Breslein (github.com/tbreslein)
// License: MIT
//! Exports useful macros for public use
/// Expands to a type alias `P` for the type of physics you are using, and a constant `E` that
/// represents the number of equations in that system.
/// This macro is used to make sure that E is always set correctly for your type of physics, while
/// also giving you a useful type alias to make your code look more generic than it actually is.
///
/// NOTE: You need to have set the constant S, which sets how many cells the mesh will have, before
/// calling this macro, otherwise it will not compile!
///
/// # Arguments
///
/// Only accepts either of:
///
/// * `Euler1DAdiabatic`
/// * `Euler1DIsot`
///
/// # Examples
///
/// ```
/// use corries::prelude::*;
/// use std::any::TypeId;
///
/// // Set up adiabatic 1d Euler physics
/// const S: usize = 100;
/// set_Physics_and_E!(Euler1DAdiabatic);
/// assert_eq!(TypeId::of::<P>(), TypeId::of::<Euler1DAdiabatic<S>>());
/// assert_eq!(E, 3);
/// ```
///
/// ```
/// use corries::prelude::*;
/// use std::any::TypeId;
///
/// // Set up isothermal 1d Euler physics
/// const S: usize = 100;
/// set_Physics_and_E!(Euler1DIsot);
/// assert_eq!(TypeId::of::<P>(), TypeId::of::<Euler1DIsot<S>>());
/// assert_eq!(E, 2);
/// ```
#[macro_export]
macro_rules! set_Physics_and_E {
(Euler1DAdiabatic) => {
type P = Euler1DAdiabatic<S>;
const E: usize = P::NUM_EQ;
};
(Euler1DIsot) => {
type P = Euler1DIsot<S>;
const E: usize = P::NUM_EQ;
};
}
/// Macro to check that each double in a list is finite.
///
/// # Examples
///
/// ```
/// use color_eyre::{Result, eyre::ensure};
/// use corries::check_finite_double;
///
/// fn get_finite() -> Result<()> {
/// check_finite_double!(1.0_f64);
/// Ok(())
/// }
/// fn get_inf() -> Result<()> {
/// check_finite_double!(2.2_f64, f64::INFINITY, 1.0_f64);
/// Ok(())
/// }
///
/// fn main() {
/// let succeeds = get_finite();
/// let errors = get_inf();
/// assert!(succeeds.is_ok());
/// assert!(errors.is_err());
/// }
/// ```
#[macro_export]
macro_rules! check_finite_double {
($($s:ident.$x:ident),*) => {
$(ensure!(
$s.$x.is_finite(),
"{0} turned non-finite! Got: {0} = {1}",
stringify!($x),
$s.$x
);)*
};
($($x:expr),*) => {
$(
ensure!(
$x.is_finite(),
"{0} turned non-finite! Got: {0} = {1}",
stringify!($x),
$x);
)*
};
}
/// Macro to check that each `Array` in a list is finite.
///
/// # Examples
///
/// ```
/// use color_eyre::{Result, eyre::ensure};
/// use corries::check_finite_arrayd;
/// use ndarray::Array1;
///
/// fn get_finites() -> Result<()> {
/// check_finite_arrayd!(Array1::<f64>::zeros(5));
/// Ok(())
/// }
/// fn get_infs() -> Result<()> {
/// check_finite_arrayd!(Array1::<f64>::ones(3), Array1::<f64>::from_elem(5, f64::INFINITY));
/// Ok(())
/// }
///
/// fn main() {
/// let succeeds = get_finites();
/// let errors = get_infs();
/// assert!(succeeds.is_ok());
/// assert!(errors.is_err());
/// }
/// ```
#[macro_export]
macro_rules! check_finite_arrayd {
($($s:ident.$x:ident),*) => {
$(ensure!(
$s.$x.fold(true, |acc, y| acc && y.is_finite()),
"{0} turned non-finite! Got: {0} = {1}",
stringify!($x),
$s.$x
);)*
};
($($x:expr),*) => {
$(ensure!(
$x.fold(true, |acc, y| acc && y.is_finite()),
"{0} turned non-finite! Got: {0} = {1}",
stringify!($x),
$x
);)*
};
}
/// Macro to check that each double in a list is finite.
///
/// # Examples
///
/// ```
/// use color_eyre::{Result, eyre::ensure};
/// use corries::check_positive_double;
///
/// fn get_positive() -> Result<()> {
/// check_positive_double!(1.0_f64);
/// Ok(())
/// }
/// fn get_zero() -> Result<()> {
/// check_positive_double!(2.2_f64, 0.0_f64, 1.0_f64);
/// Ok(())
/// }
///
/// fn main() {
/// let succeeds = get_positive();
/// let errors = get_zero();
/// assert!(succeeds.is_ok());
/// assert!(errors.is_err());
/// }
/// ```
#[macro_export]
macro_rules! check_positive_double {
($($s:ident.$x:ident),*) => {
$(ensure!(
$s.$x > 0.0,
"{0} is non-positive! Got: {0} = {1}",
stringify!($x),
$s.$x
);)*
};
($($x:expr),*) => {
$(
ensure!(
$x > 0.0,
"{0} is non-positive! Got: {0} = {1}",
stringify!($x),
$x);
)*
};
}
/// Macro to check that each `Array` has only positive non-zero elements.
///
/// # Examples
///
/// ```
/// use color_eyre::{Result, eyre::ensure};
/// use corries::check_positive_arrayd;
/// use ndarray::Array1;
///
/// fn get_ones() -> Result<()> {
/// check_positive_arrayd!(Array1::<f64>::ones(5));
/// Ok(())
/// }
/// fn get_zeros() -> Result<()> {
/// check_positive_arrayd!(Array1::<f64>::ones(2), Array1::<f64>::zeros(2));
/// Ok(())
/// }
///
/// fn main() {
/// let succeeds = get_ones();
/// let errors = get_zeros();
/// assert!(succeeds.is_ok());
/// assert!(errors.is_err());
/// }
/// ```
#[macro_export]
macro_rules! check_positive_arrayd {
($($s:ident.$x:ident),*) => {
$(ensure!(
$s.$x.fold(true, |acc, y| acc && y > &0.0),
"{0} turned non-positive! Got: {0} = {1}",
stringify!($x),
$s.$x
);)*
};
($($x:expr),*) => {
$(ensure!(
$x.fold(true, |acc, y| acc && y > &0.0),
"{0} turned non-positive! Got: {0} = {1}",
stringify!($x),
$x
);)*
};
}