1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Heterogeneous immutable arrays.

pub use core_foundation_sys::array::*;
pub use core_foundation_sys::base::CFIndex;
use core_foundation_sys::base::{CFTypeRef, CFRelease, kCFAllocatorDefault};
use std::mem;
use std::marker::PhantomData;
use std::os::raw::c_void;
use std::ptr;
use ConcreteCFType;

use base::{CFIndexConvertible, TCFType, CFRange};
use base::{FromVoid, ItemRef};

/// A heterogeneous immutable array.
pub struct CFArray<T = *const c_void>(CFArrayRef, PhantomData<T>);

impl<T> Drop for CFArray<T> {
    fn drop(&mut self) {
        unsafe { CFRelease(self.as_CFTypeRef()) }
    }
}

pub struct CFArrayIterator<'a, T: 'a> {
    array: &'a CFArray<T>,
    index: CFIndex,
    len: CFIndex,
}

impl<'a, T: FromVoid> Iterator for CFArrayIterator<'a, T> {
    type Item = ItemRef<'a, T>;

    fn next(&mut self) -> Option<ItemRef<'a, T>> {
        if self.index >= self.len {
            None
        } else {
            let value = unsafe { self.array.get_unchecked(self.index) };
            self.index += 1;
            Some(value)
        }
    }
}

impl<'a, T: FromVoid> ExactSizeIterator for CFArrayIterator<'a, T> {
    fn len(&self) -> usize {
        (self.array.len() - self.index) as usize
    }
}

impl_TCFType!(CFArray<T>, CFArrayRef, CFArrayGetTypeID);
impl_CFTypeDescription!(CFArray);

unsafe impl ConcreteCFType for CFArray<*const c_void> {}

impl<T> CFArray<T> {
    /// Creates a new `CFArray` with the given elements, which must implement `Copy`.
    pub fn from_copyable(elems: &[T]) -> CFArray<T> where T: Copy {
        unsafe {
            let array_ref = CFArrayCreate(kCFAllocatorDefault,
                                          elems.as_ptr() as *const *const c_void,
                                          elems.len().to_CFIndex(),
                                          ptr::null());
            TCFType::wrap_under_create_rule(array_ref)
        }
    }

    /// Creates a new `CFArray` with the given elements, which must be `CFType` objects.
    pub fn from_CFTypes(elems: &[T]) -> CFArray<T> where T: TCFType {
        unsafe {
            let elems: Vec<CFTypeRef> = elems.iter().map(|elem| elem.as_CFTypeRef()).collect();
            let array_ref = CFArrayCreate(kCFAllocatorDefault,
                                          elems.as_ptr(),
                                          elems.len().to_CFIndex(),
                                          &kCFTypeArrayCallBacks);
            TCFType::wrap_under_create_rule(array_ref)
        }
    }

    #[inline]
    pub fn to_untyped(&self) -> CFArray {
        unsafe { CFArray::wrap_under_get_rule(self.0) }
    }

    /// Returns the same array, but with the type reset to void pointers.
    /// Equal to `to_untyped`, but is faster since it does not increment the retain count.
    #[inline]
    pub fn into_untyped(self) -> CFArray {
        let reference = self.0;
        mem::forget(self);
        unsafe { CFArray::wrap_under_create_rule(reference) }
    }

    /// Iterates over the elements of this `CFArray`.
    ///
    /// Careful; the loop body must wrap the reference properly. Generally, when array elements are
    /// Core Foundation objects (not always true), they need to be wrapped with
    /// `TCFType::wrap_under_get_rule()`.
    #[inline]
    pub fn iter<'a>(&'a self) -> CFArrayIterator<'a, T> {
        CFArrayIterator {
            array: self,
            index: 0,
            len: self.len(),
        }
    }

    #[inline]
    pub fn len(&self) -> CFIndex {
        unsafe {
            CFArrayGetCount(self.0)
        }
    }

    #[inline]
    pub unsafe fn get_unchecked<'a>(&'a self, index: CFIndex) -> ItemRef<'a, T> where T: FromVoid {
        T::from_void(CFArrayGetValueAtIndex(self.0, index))
    }

    #[inline]
    pub fn get<'a>(&'a self, index: CFIndex) -> Option<ItemRef<'a, T>> where T: FromVoid {
        if index < self.len() {
            Some(unsafe { T::from_void(CFArrayGetValueAtIndex(self.0, index)) } )
        } else {
            None
        }
    }

    pub fn get_values(&self, range: CFRange) -> Vec<*const c_void> {
        let mut vec = Vec::with_capacity(range.length as usize);
        unsafe {
            CFArrayGetValues(self.0, range, vec.as_mut_ptr());
            vec.set_len(range.length as usize);
            vec
        }
    }

    pub fn get_all_values(&self) -> Vec<*const c_void> {
        self.get_values(CFRange {
            location: 0,
            length: self.len()
        })
    }
}

impl<'a, T: FromVoid> IntoIterator for &'a CFArray<T> {
    type Item = ItemRef<'a, T>;
    type IntoIter = CFArrayIterator<'a, T>;

    fn into_iter(self) -> CFArrayIterator<'a, T> {
        self.iter()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::mem;
    use base::CFType;

    #[test]
    fn to_untyped_correct_retain_count() {
        let array = CFArray::<CFType>::from_CFTypes(&[]);
        assert_eq!(array.retain_count(), 1);

        let untyped_array = array.to_untyped();
        assert_eq!(array.retain_count(), 2);
        assert_eq!(untyped_array.retain_count(), 2);

        mem::drop(array);
        assert_eq!(untyped_array.retain_count(), 1);
    }

    #[test]
    fn into_untyped() {
        let array = CFArray::<CFType>::from_CFTypes(&[]);
        let array2 = array.to_untyped();
        assert_eq!(array.retain_count(), 2);

        let untyped_array = array.into_untyped();
        assert_eq!(untyped_array.retain_count(), 2);

        mem::drop(array2);
        assert_eq!(untyped_array.retain_count(), 1);
    }

    #[test]
    fn borrow() {
        use string::CFString;

        let string = CFString::from_static_string("bar");
        assert_eq!(string.retain_count(), 1);
        let x;
        {
            let arr: CFArray<CFString> = CFArray::from_CFTypes(&[string]);
            {
                let p = arr.get(0).unwrap();
                assert_eq!(p.retain_count(), 1);
            }
            {
                x = arr.get(0).unwrap().clone();
                assert_eq!(x.retain_count(), 2);
                assert_eq!(x.to_string(), "bar");
            }
        }
        assert_eq!(x.retain_count(), 1);
    }

    #[test]
    fn iter_untyped_array() {
        use string::{CFString, CFStringRef};
        use base::TCFTypeRef;

        let cf_string = CFString::from_static_string("bar");
        let array: CFArray = CFArray::from_CFTypes(&[cf_string.clone()]).into_untyped();

        let cf_strings = array.iter().map(|ptr| {
            unsafe { CFString::wrap_under_get_rule(CFStringRef::from_void_ptr(*ptr)) }
        }).collect::<Vec<_>>();
        let strings = cf_strings.iter().map(|s| s.to_string()).collect::<Vec<_>>();
        assert_eq!(cf_string.retain_count(), 3);
        assert_eq!(&strings[..], &["bar"]);
    }

    #[test]
    fn should_box_and_unbox() {
        use number::CFNumber;

        let n0 = CFNumber::from(0);
        let n1 = CFNumber::from(1);
        let n2 = CFNumber::from(2);
        let n3 = CFNumber::from(3);
        let n4 = CFNumber::from(4);
        let n5 = CFNumber::from(5);

        let arr = CFArray::from_CFTypes(&[
            n0.as_CFType(),
            n1.as_CFType(),
            n2.as_CFType(),
            n3.as_CFType(),
            n4.as_CFType(),
            n5.as_CFType(),
        ]);

        assert_eq!(
            arr.get_all_values(),
            &[
                n0.as_CFTypeRef(),
                n1.as_CFTypeRef(),
                n2.as_CFTypeRef(),
                n3.as_CFTypeRef(),
                n4.as_CFTypeRef(),
                n5.as_CFTypeRef()
            ]
        );

        let mut sum = 0;

        let mut iter = arr.iter();
        assert_eq!(iter.len(), 6);
        assert!(iter.next().is_some());
        assert_eq!(iter.len(), 5);

        for elem in iter {
            let number: CFNumber = elem.downcast::<CFNumber>().unwrap();
            sum += number.to_i64().unwrap()
        }

        assert_eq!(sum, 15);

        for elem in arr.iter() {
            let number: CFNumber = elem.downcast::<CFNumber>().unwrap();
            sum += number.to_i64().unwrap()
        }

        assert_eq!(sum, 30);
    }
}