1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use image::{DynamicImage, GenericImageView, ImageBuffer, Luma, Rgb};
use crate::kernel::{SeparableKernel};

pub trait Convolution where Self: GenericImageView {
    fn compute_pixel_index(
        &self,
        stride: usize,
        kernel_size: usize,
        kernel_index: isize,
        pixel_index: usize,
        max: usize,
    ) -> u32 {
        let kernel_size = kernel_size as isize;
        let kernel_padding = kernel_size / 2;

        let distance = kernel_index * stride as isize;

        let mut index = pixel_index as isize + distance;

        if index < 0 {
            index = -index;
        } else if index > max as isize - kernel_padding {
            let overshot_distance = index - max as isize + kernel_padding;
            index = max as isize - overshot_distance;
        }

        index as u32
    }

    fn convolve<const KERNEL_SIZE: usize>(
        &mut self,
        kernel: SeparableKernel<KERNEL_SIZE>,
        stride: usize,
    );
}

impl Convolution for ImageBuffer<Luma<f32>, Vec<f32>> {
    fn convolve<const KERNEL_SIZE: usize>(&mut self, kernel: SeparableKernel<KERNEL_SIZE>, stride: usize) {
        let linear_kernel = kernel.values();

        for y in 0..self.height() {
            for x in 0..self.width() {
                let mut pixel_sum = 0.;

                for (kernel_index, value) in linear_kernel.iter().enumerate() {
                    let relative_kernel_index = kernel_index as isize - (KERNEL_SIZE as isize / 2);
                    let pixel_index = self.compute_pixel_index(
                        stride,
                        KERNEL_SIZE,
                        relative_kernel_index,
                        x as usize,
                        self.width() as usize
                    );

                    pixel_sum += self.get_pixel(pixel_index, y).0[0] * value;
                }

                self.put_pixel(x, y, Luma([pixel_sum]));
            }
        }

        for x in 0..self.width() {
            for y in 0..self.height() {
                let mut pixel_sum = 0.;

                for (kernel_index, value) in linear_kernel.iter().enumerate() {
                    let relative_kernel_index = kernel_index as isize - (KERNEL_SIZE as isize / 2);
                    let pixel_index = self.compute_pixel_index(
                        stride,
                        KERNEL_SIZE,
                        relative_kernel_index,
                        y as usize,
                        self.width() as usize
                    );

                    pixel_sum += self.get_pixel(x, pixel_index).0[0] * value;
                }

                self.put_pixel(x, y, Luma([pixel_sum]));
            }
        }
    }
}

impl Convolution for ImageBuffer<Rgb<f32>, Vec<f32>> {
    fn convolve<const KERNEL_SIZE: usize>(&mut self, kernel: SeparableKernel<KERNEL_SIZE>, stride: usize) {
        let linear_kernel = kernel.values();

        for y in 0..self.height() {
            for x in 0..self.width() {
                let mut pixel_sum = [0., 0., 0.];

                for (kernel_index, value) in linear_kernel.iter().enumerate() {
                    let relative_kernel_index = kernel_index as isize - (KERNEL_SIZE as isize / 2);
                    let pixel_index = self.compute_pixel_index(
                        stride,
                        KERNEL_SIZE,
                        relative_kernel_index,
                        x as usize,
                        self.width() as usize
                    );

                    let mut computed_values = self.get_pixel(pixel_index, y).0;
                    computed_values = [computed_values[0] * value, computed_values[1] * value, computed_values[2] * value];

                    pixel_sum = [pixel_sum[0] + computed_values[0], pixel_sum[1] + computed_values[1], pixel_sum[2] + computed_values[2]];
                }

                let [r, g, b] = pixel_sum;
                self.put_pixel(x, y, Rgb([r, g, b]));
            }
        }

        for x in 0..self.width() {
            for y in 0..self.height() {
                let mut pixel_sum = [0., 0., 0.];

                for (kernel_index, value) in linear_kernel.iter().enumerate() {
                    let relative_kernel_index = kernel_index as isize - (KERNEL_SIZE as isize / 2);
                    let pixel_index = self.compute_pixel_index(
                        stride,
                        KERNEL_SIZE,
                        relative_kernel_index,
                        y as usize,
                        self.width() as usize
                    );

                    let mut computed_values = self.get_pixel(x, pixel_index).0;
                    computed_values = [computed_values[0] * value, computed_values[1] * value, computed_values[2] * value];

                    pixel_sum = [pixel_sum[0] + computed_values[0], pixel_sum[1] + computed_values[1], pixel_sum[2] + computed_values[2]];
                }

                let [r, g, b] = pixel_sum;
                self.put_pixel(x, y, Rgb([r, g, b]));
            }
        }
    }
}

impl Convolution for DynamicImage {
    fn convolve<const KERNEL_SIZE: usize>(
        &mut self,
        kernel: SeparableKernel<KERNEL_SIZE>,
        stride: usize,
    ) {
        match self {
            DynamicImage::ImageLuma8(_) |
            DynamicImage::ImageLumaA8(_) |
            DynamicImage::ImageLuma16(_) |
            DynamicImage::ImageLumaA16(_) => {
                let mut image = self.to_luma32f();
                image.convolve(kernel, stride);

                let mut result_img: ImageBuffer<Luma<u16>, Vec<u16>> =
                    ImageBuffer::new(self.width(), self.height());

                for (x, y, pixel) in result_img.enumerate_pixels_mut() {
                    *pixel =
                        Luma([(image.get_pixel(x, y).0[0] * u16::MAX as f32) as u16]);
                }

                *self = DynamicImage::ImageLuma16(result_img);
            }
            DynamicImage::ImageRgb8(_) |
            DynamicImage::ImageRgba8(_) |
            DynamicImage::ImageRgb16(_) |
            DynamicImage::ImageRgba16(_) |
            DynamicImage::ImageRgb32F(_) |
            DynamicImage::ImageRgba32F(_) => {
                let mut image = self.to_rgb32f();
                image.convolve(kernel, stride);

                *self = DynamicImage::ImageRgb32F(image);
            }
            _ => unimplemented!("Not implemented")
        }
    }
}