Expand description
§Control Systems Torbox
Control Systems Torbox is a Rust library for designing, analyzing, simulating, and implementing linear control systems. This crate provides a comprehensive set of tools for working with transfer functions, state-space representations, frequency response analysis, and plotting.
§Features
- Transfer Functions: Create and manipulate transfer functions.
- State-Space Representations: Convert between transfer functions and state-space representations.
- Frequency Response Analysis: Compute Bode and Nyquist plots.
- Properties of System: H2-norm, H-inf-norm, poles, zeros
- Plotting: Display Bode and Nyquist plots natively using
egui
.
§Examples
The crate contains a representation for transfer functions:
use control_systems_torbox::*;
let tf_lp = Tf::<f64, Continuous>::new(&[10.0], &[10.0, 1.0]); // 10/(s + 10)
let sys = 1.0 / Tf::s();
let pi_c = 1.0 + 1.0 / Tf::s();
let openloop = sys * pi_c * tf_lp;
let tracking = openloop.clone() / (1.0 + openloop);
State-Space representations is also implemented and you can convert between transfer function and state-space
use control_systems_torbox::*;
use nalgebra::DMatrix;
let a = DMatrix::from_row_slice(2, 2, &[0., 0., 1., 0.]);
let b = DMatrix::from_row_slice(2, 1, &[1., 0.]);
let c = DMatrix::from_row_slice(1, 2, &[0., 1.]);
let d = DMatrix::from_row_slice(1, 1, &[0.]);
let sys_ss = Ss::<Continuous>::new(a, b, c, d).unwrap();
let sys_tf = sys_ss.to_tf().unwrap();
System norms such as H2-norm and H-inf-norm are also possible to calculte
use control_systems_torbox::*;
let low_pass = 1.0/(Tf::s().powi(2) + 2.0*0.2*Tf::s() + 0.1);
let low_pass = low_pass.to_ss().unwrap();
let h2_norm = low_pass.norm_h2().unwrap();
let hinf_norm = low_pass.norm_hinf().unwrap();
println!("H2 norm is: {}, H-inf norm is: {}", h2_norm, hinf_norm);
It is also possible to calculte the poles and zeros of a system
use control_systems_torbox::*;
let tf = (Tf::s() -1.0)*(Tf::s() + 3.0)/((Tf::s() - 4.0)*(Tf::s() + 5.0));
let ss = tf.to_ss().unwrap();
let poles = ss.poles();
let zeros = ss.zeros().unwrap();
println!("Tf:\n{}", tf);
println!("Poles:");
for pole in poles {
println!("{}", pole);
}
println!("\nZeros:");
for zero in zeros {
println!("{}", zero);
}
Both Bodeplot and Nyquistplot is implemented and can be displayed natively:
use control_systems_torbox::*;
let sys = (1.0/Tf::s()) * (1.0 + 1.0/Tf::s());
let sys_clp = sys.clone() / (1.0 + sys.clone());
let mut bode_plot = BodePlot::new(BodePlotOptions::default());
bode_plot.add_system(BodePlotData::new(sys_clp.bode(0.1, 10.)));
bode_plot.show(800, 600, "Bode plot demo").unwrap();
let mut nyq_plot = NyquistPlot::new(NyquistPlotOptions::default());
nyq_plot.add_system(NyquistPlotData::new(sys.nyquist(0.1, 100.)));
nyq_plot.show(600, 600, "Nyquist plot demo").unwrap();
!
Re-exports§
pub use analysis::frequency_response::FrequencyResponse;
pub use plot::BodePlot;
pub use plot::BodePlotData;
pub use plot::BodePlotEgui;
pub use plot::BodePlotOptions;
pub use plot::NyquistPlot;
pub use plot::NyquistPlotData;
pub use plot::NyquistPlotEgui;
pub use plot::NyquistPlotOptions;
pub use plot::Plot;
pub use plot::RGBAColor;
pub use systems::Ss;
pub use systems::Tf;
pub use transformations::SsRealization;
pub use utils::traits::Continuous;
pub use utils::traits::Discrete;