1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
use super::num::{Complex, Field, PI};
use std::ops::{Add, Div, Mul, Neg, Sub};
struct BitRevIterator {
a: usize,
n: usize,
}
impl BitRevIterator {
fn new(n: usize) -> Self {
assert!(n.is_power_of_two());
Self { a: 2 * n - 1, n }
}
}
impl Iterator for BitRevIterator {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
if self.a == 2 * self.n - 2 {
return None;
}
let mut mask = self.n;
while self.a & mask > 0 {
self.a ^= mask;
mask /= 2;
}
self.a |= mask;
Some(self.a / 2)
}
}
pub trait FFT: Sized + Copy {
type F: Sized
+ Copy
+ From<Self>
+ Neg
+ Add<Output = Self::F>
+ Div<Output = Self::F>
+ Mul<Output = Self::F>
+ Sub<Output = Self::F>;
const ZERO: Self;
fn get_roots(n: usize, inverse: bool) -> Vec<Self::F>;
fn get_factor(n: usize, inverse: bool) -> Self::F;
fn extract(f: Self::F) -> Self;
}
impl FFT for f64 {
type F = Complex;
const ZERO: f64 = 0.0;
fn get_roots(n: usize, inverse: bool) -> Vec<Self::F> {
let step = if inverse { -2.0 } else { 2.0 } * PI / n as f64;
(0..n / 2)
.map(|i| Complex::from_polar(1.0, step * i as f64))
.collect()
}
fn get_factor(n: usize, inverse: bool) -> Self::F {
Self::F::from(if inverse { (n as f64).recip() } else { 1.0 })
}
fn extract(f: Self::F) -> f64 {
f.real
}
}
impl FFT for i64 {
type F = Field;
const ZERO: Self = 0;
fn get_roots(n: usize, inverse: bool) -> Vec<Self::F> {
assert!(n <= 1 << 23);
let mut prim_root = Self::F::from(15_311_432);
if inverse {
prim_root = prim_root.recip();
}
for _ in (0..).take_while(|&i| n < 1 << (23 - i)) {
prim_root = prim_root * prim_root;
}
let mut roots = Vec::with_capacity(n / 2);
let mut root = Self::F::from(1);
for _ in 0..roots.capacity() {
roots.push(root);
root = root * prim_root;
}
roots
}
fn get_factor(n: usize, inverse: bool) -> Self::F {
Self::F::from(if inverse { n as Self } else { 1 }).recip()
}
fn extract(f: Self::F) -> Self {
f.val
}
}
pub fn fft<T: FFT>(v: &[T::F], inverse: bool) -> Vec<T::F> {
let n = v.len();
assert!(n.is_power_of_two());
let factor = T::get_factor(n, inverse);
let roots_of_unity = T::get_roots(n, inverse);
let mut dft = BitRevIterator::new(n)
.map(|i| v[i] * factor)
.collect::<Vec<_>>();
for m in (0..).map(|s| 1 << s).take_while(|&m| m < n) {
for k in (0..n).step_by(2 * m) {
for j in 0..m {
let u = dft[k + j];
let t = dft[k + j + m] * roots_of_unity[n / 2 / m * j];
dft[k + j] = u + t;
dft[k + j + m] = u - t;
}
}
}
dft
}
pub fn dft_from_reals<T: FFT>(v: &[T], desired_len: usize) -> Vec<T::F> {
assert!(v.len() <= desired_len);
let complex_v = v
.iter()
.cloned()
.chain(std::iter::repeat(T::ZERO))
.take(desired_len.next_power_of_two())
.map(T::F::from)
.collect::<Vec<_>>();
fft::<T>(&complex_v, false)
}
pub fn idft_to_reals<T: FFT>(dft_v: &[T::F], desired_len: usize) -> Vec<T> {
assert!(dft_v.len() >= desired_len);
let complex_v = fft::<T>(dft_v, true);
complex_v
.into_iter()
.take(desired_len)
.map(T::extract)
.collect()
}
pub fn convolution<T: FFT>(a: &[T], b: &[T]) -> Vec<T> {
let len_c = a.len() + b.len() - 1;
let dft_a = dft_from_reals(a, len_c).into_iter();
let dft_b = dft_from_reals(b, len_c).into_iter();
let dft_c = dft_a.zip(dft_b).map(|(a, b)| a * b).collect::<Vec<_>>();
idft_to_reals(&dft_c, len_c)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_complex_dft() {
let v = vec![7.0, 1.0, 1.0];
let dft_v = dft_from_reals(&v, v.len());
let new_v: Vec<f64> = idft_to_reals(&dft_v, v.len());
let six = Complex::from(6.0);
let seven = Complex::from(7.0);
let nine = Complex::from(9.0);
let i = Complex::new(0.0, 1.0);
assert_eq!(dft_v, vec![nine, six + i, seven, six - i]);
assert_eq!(new_v, v);
}
#[test]
fn test_modular_dft() {
let v = vec![7, 1, 1];
let dft_v = dft_from_reals(&v, v.len());
let new_v: Vec<i64> = idft_to_reals(&dft_v, v.len());
let seven = Field::from(7);
let one = Field::from(1);
let prim = Field::from(15_311_432).pow(1 << 21);
let prim2 = prim * prim;
let eval0 = seven + one + one;
let eval1 = seven + prim + prim2;
let eval2 = seven + prim2 + one;
let eval3 = seven + prim.recip() + prim2;
assert_eq!(dft_v, vec![eval0, eval1, eval2, eval3]);
assert_eq!(new_v, v);
}
#[test]
fn test_complex_convolution() {
let x = vec![7.0, 1.0, 1.0];
let y = vec![2.0, 4.0];
let z = convolution(&x, &y);
let m = convolution(&vec![999.0], &vec![1e6]);
assert_eq!(z, vec![14.0, 30.0, 6.0, 4.0]);
assert_eq!(m, vec![999e6]);
}
#[test]
fn test_modular_convolution() {
let x = vec![7, 1, 1];
let y = vec![2, 4];
let z = convolution(&x, &y);
let m = convolution(&vec![999], &vec![1_000_000]);
assert_eq!(z, vec![14, 30, 6, 4]);
assert_eq!(m, vec![999_000_000 - Field::MOD]);
}
}