1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use super::{DisjointSets, Graph};
use crate::graph::AdjListIterator;
use std::cmp::Reverse;

impl Graph {
    /// Finds the sequence of edges in an Euler path starting from u, assuming
    /// it exists and that the graph is directed. Undefined behavior if this
    /// precondition is violated. To extend this to undirected graphs, maintain
    /// a visited array to skip the reverse edge.
    pub fn euler_path(&self, u: usize) -> Vec<usize> {
        let mut adj_iters = (0..self.num_v())
            .map(|u| self.adj_list(u))
            .collect::<Vec<_>>();
        let mut edges = Vec::with_capacity(self.num_e());
        self.euler_recurse(u, &mut adj_iters, &mut edges);
        edges.reverse();
        edges
    }

    // Helper function used by euler_path. Note that we can't use a for-loop
    // that would consume the adjacency list as recursive calls may need it.
    fn euler_recurse(&self, u: usize, adj: &mut [AdjListIterator], edges: &mut Vec<usize>) {
        while let Some((e, v)) = adj[u].next() {
            self.euler_recurse(v, adj, edges);
            edges.push(e);
        }
    }

    /// Kruskal's minimum spanning tree algorithm on an undirected graph.
    pub fn min_spanning_tree(&self, weights: &[i64]) -> Vec<usize> {
        assert_eq!(self.num_e(), 2 * weights.len());
        let mut edges = (0..weights.len()).collect::<Vec<_>>();
        edges.sort_unstable_by_key(|&e| weights[e]);

        let mut components = DisjointSets::new(self.num_v());
        edges
            .into_iter()
            .filter(|&e| components.merge(self.endp[2 * e], self.endp[2 * e + 1]))
            .collect()
    }

    // Single-source shortest paths on a directed graph with non-negative weights
    pub fn dijkstra(&self, weights: &[u64], u: usize) -> Vec<u64> {
        assert_eq!(self.num_e(), weights.len());
        let mut dist = vec![u64::max_value(); weights.len()];
        let mut heap = std::collections::BinaryHeap::new();

        dist[u] = 0;
        heap.push((Reverse(0), 0));
        while let Some((Reverse(dist_u), u)) = heap.pop() {
            if dist[u] == dist_u {
                for (e, v) in self.adj_list(u) {
                    let dist_v = dist_u + weights[e];
                    if dist[v] > dist_v {
                        dist[v] = dist_v;
                        heap.push((Reverse(dist_v), v));
                    }
                }
            }
        }
        dist
    }

    pub fn dfs(&self, u: usize) -> DfsIterator {
        let adj_iters = (0..self.num_v())
            .map(|u| self.adj_list(u))
            .collect::<Vec<_>>();

        DfsIterator {
            visited: vec![false; self.num_v()],
            stack: vec![u],
            adj_iters,
        }
    }
}

pub struct DfsIterator<'a> {
    visited: Vec<bool>,
    stack: Vec<usize>,
    adj_iters: Vec<AdjListIterator<'a>>,
}

impl<'a> Iterator for DfsIterator<'a> {
    type Item = usize;

    /// Returns next vertex in the DFS
    fn next(&mut self) -> Option<Self::Item> {
        // Sources:
        // https://www.geeksforgeeks.org/iterative-depth-first-traversal/
        // https://en.wikipedia.org/wiki/Depth-first_search
        while let Some(&u) = self.stack.last() {
            if let Some((_, v)) = self.adj_iters[u].next() {
                if !self.visited[v] {
                    self.stack.push(v);
                }
            } else {
                self.stack.pop();
            }

            // Stack may contain same vertex twice. So
            // we return the popped item only
            // if it is not visited.
            if !self.visited[u] {
                self.visited[u] = true;
                return Some(u);
            }
        }

        None
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_euler() {
        let mut graph = Graph::new(3, 4);
        graph.add_edge(0, 1);
        graph.add_edge(1, 0);
        graph.add_edge(1, 2);
        graph.add_edge(2, 1);

        assert_eq!(graph.euler_path(0), vec![0, 2, 3, 1]);
    }

    #[test]
    fn test_min_spanning_tree() {
        let mut graph = Graph::new(3, 6);
        graph.add_undirected_edge(0, 1);
        graph.add_undirected_edge(1, 2);
        graph.add_undirected_edge(2, 0);
        let weights = [7, 3, 5];

        let mst = graph.min_spanning_tree(&weights);
        let mst_cost = mst.iter().map(|&e| weights[e]).sum::<i64>();
        assert_eq!(mst, vec![1, 2]);
        assert_eq!(mst_cost, 8);
    }

    #[test]
    fn test_dijkstra() {
        let mut graph = Graph::new(3, 3);
        graph.add_edge(0, 1);
        graph.add_edge(1, 2);
        graph.add_edge(2, 0);
        let weights = [7, 3, 5];

        let dist = graph.dijkstra(&weights, 0);
        assert_eq!(dist, vec![0, 7, 10]);
    }

    #[test]
    fn test_dfs() {
        let mut graph = Graph::new(4, 8);
        graph.add_edge(0, 2);
        graph.add_edge(2, 0);
        graph.add_edge(1, 2);
        graph.add_edge(0, 1);
        graph.add_edge(3, 3);
        graph.add_edge(2, 3);

        let dfs_search = graph.dfs(2).collect::<Vec<_>>();
        assert_eq!(dfs_search, vec![2, 3, 0, 1]);
    }

    #[test]
    fn test_dfs2() {
        let mut graph = Graph::new(5, 8);
        graph.add_edge(0, 2);
        graph.add_edge(2, 1);
        graph.add_edge(1, 0);
        graph.add_edge(0, 3);
        graph.add_edge(3, 4);
        graph.add_edge(4, 0);

        let dfs_search = graph.dfs(0).collect::<Vec<_>>();
        //Note this is not the only valid DFS
        assert_eq!(dfs_search, vec![0, 3, 4, 2, 1]);
    }

    #[test]
    fn test_dfs_space_complexity() {
        let num_v = 20;
        let mut graph = Graph::new(num_v, 0);
        for i in 0..num_v {
            for j in 0..num_v {
                graph.add_undirected_edge(i, j);
            }
        }

        let mut dfs_search = graph.dfs(7);
        let mut dfs_check = vec![];
        for _ in 0..num_v {
            dfs_check.push(dfs_search.next().unwrap());
            assert!(dfs_search.stack.len() <= num_v + 1);
        }

        dfs_check.sort();
        dfs_check.dedup();
        assert_eq!(0, dfs_check[0]);
        assert_eq!(num_v, dfs_check.len());
        assert_eq!(num_v - 1, dfs_check[num_v - 1]);
    }
}