1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
pub mod connectivity;
mod dfs;
pub mod flow;
pub struct DisjointSets {
parent: Vec<usize>,
}
impl DisjointSets {
pub fn new(size: usize) -> Self {
Self {
parent: (0..size).collect(),
}
}
pub fn find(&mut self, u: usize) -> usize {
let pu = self.parent[u];
if pu != u {
self.parent[u] = self.find(pu);
}
self.parent[u]
}
pub fn merge(&mut self, u: usize, v: usize) -> bool {
let (pu, pv) = (self.find(u), self.find(v));
self.parent[pu] = pv;
pu != pv
}
}
pub struct Graph {
first: Vec<Option<usize>>,
next: Vec<Option<usize>>,
endp: Vec<usize>,
}
impl Graph {
pub fn new(vmax: usize, emax_hint: usize) -> Self {
Self {
first: vec![None; vmax],
next: Vec::with_capacity(emax_hint),
endp: Vec::with_capacity(emax_hint),
}
}
pub fn num_v(&self) -> usize {
self.first.len()
}
pub fn num_e(&self) -> usize {
self.endp.len()
}
pub fn add_edge(&mut self, u: usize, v: usize) {
self.next.push(self.first[u]);
self.first[u] = Some(self.num_e());
self.endp.push(v);
}
pub fn add_undirected_edge(&mut self, u: usize, v: usize) {
self.add_edge(u, v);
self.add_edge(v, u);
}
pub fn add_two_sat_clause(&mut self, u: usize, v: usize) {
self.add_edge(u ^ 1, v);
self.add_edge(v ^ 1, u);
}
pub fn adj_list(&self, u: usize) -> AdjListIterator {
AdjListIterator {
graph: self,
next_e: self.first[u],
}
}
pub fn euler_path(&self, u: usize) -> Vec<usize> {
let mut adj_iters = (0..self.num_v())
.map(|u| self.adj_list(u))
.collect::<Vec<_>>();
let mut edges = Vec::with_capacity(self.num_e());
self.euler_recurse(u, &mut adj_iters, &mut edges);
edges.reverse();
edges
}
fn euler_recurse(&self, u: usize, adj: &mut [AdjListIterator], edges: &mut Vec<usize>) {
while let Some((e, v)) = adj[u].next() {
self.euler_recurse(v, adj, edges);
edges.push(e);
}
}
pub fn min_spanning_tree(&self, weights: &[i64]) -> Vec<usize> {
assert_eq!(self.num_e(), 2 * weights.len());
let mut edges = (0..weights.len()).collect::<Vec<_>>();
edges.sort_unstable_by_key(|&e| weights[e]);
let mut components = DisjointSets::new(self.num_v());
edges
.into_iter()
.filter(|&e| components.merge(self.endp[2 * e], self.endp[2 * e + 1]))
.collect()
}
}
pub struct AdjListIterator<'a> {
graph: &'a Graph,
next_e: Option<usize>,
}
impl<'a> Iterator for AdjListIterator<'a> {
type Item = (usize, usize);
fn next(&mut self) -> Option<Self::Item> {
self.next_e.map(|e| {
let v = self.graph.endp[e];
self.next_e = self.graph.next[e];
(e, v)
})
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_euler() {
let mut graph = Graph::new(3, 4);
graph.add_edge(0, 1);
graph.add_edge(1, 0);
graph.add_edge(1, 2);
graph.add_edge(2, 1);
assert_eq!(graph.euler_path(0), vec![0, 2, 3, 1]);
}
#[test]
fn test_min_spanning_tree() {
let mut graph = Graph::new(3, 3);
graph.add_undirected_edge(0, 1);
graph.add_undirected_edge(1, 2);
graph.add_undirected_edge(2, 0);
let weights = [7, 3, 5];
let mst = graph.min_spanning_tree(&weights);
let mst_cost = mst.iter().map(|&e| weights[e]).sum::<i64>();
assert_eq!(mst, vec![1, 2]);
assert_eq!(mst_cost, 8);
}
}