1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
#!#[rustfmt::skip]
#![allow(unused_variables)]
// You've got to start somewhere
use constructivism::*;
// ### Constructs and Sequences
// 1.1 **Constructs**: Constructivism revolves around the concept of Constructs.
#[derive(Construct)]
pub struct Node {
hidden: bool,
position: (f32, f32),
}
// 1.2 **Constructing**: You can use the `construct!` macro to create instances of Constructs.
// Please ***note*** the dots at the beginning of the each param, they are required and you
// will find this syntax quite useful.
fn create_node() {
let node = construct!(Node {
.position: (10., 10.),
.hidden: true,
});
assert_eq!(node.position.0, 10.);
assert_eq!(node.hidden, true);
}
// 1.3 **Sequences**: A Construct can be declared only in front of another Construct.
// `constructivism` comes with only Nothing, () construct. The `Self -> Base` relation
// called Sequence in `constrcutivism`. You can omit the Sequence declaration,
// `Self -> Nothing` used in this case. If you want to derive Construct on the top of another
// meaningful Construct, you have to specify Sequence directly using
// `#[construct(/* Sequence */)]` attribute.
#[derive(Construct)]
#[construct(Rect -> Node)]
pub struct Rect {
size: (f32, f32),
}
// 1.4 **Constructing Sequences**: The Sequence for the Rect in example above becomes
// `Rect -> Node -> Nothing`. You can `construct!` the entire sequence within a single call:
fn create_sequence() {
let (rect, node /* nothing */) = construct!(Rect {
.hidden, // You can write just `.hidden` instead of `.hidden: true`
.position: (10., 10.),
.size: (10., 10.),
});
assert_eq!(rect.size.0, 10.);
assert_eq!(node.position.1, 10.);
assert_eq!(node.hidden, true);
}
// 1.5 **Params**: There are different kind of Params (the things you passing to `construct!(..)`):
// - Common: use `Default::default()` if not passed to `construct!(..)`
// - Default: use provided value if not passed to `construct!(..)`
// - Required: must be passed to `construct!(..)`
// - Skip: can't be passed to `construct!(..)`, use Default::default() or provided value
// You configure behaviour using `#[param]` attribute when deriving:
#[derive(Construct)]
#[construct(Follow -> Node)]
pub struct Follow {
offset: (f32, f32), // Common, no #[param]
#[param(required)] // Required
target: Entity,
#[param(default = Anchor::Center)] // Default
anchor: Anchor,
#[param(skip)] // Skip with Default::default()
last_computed_distance: f32,
#[param(skip = FollowState::None)] // Skip with provided value
state: FollowState,
}
#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Entity;
pub enum Anchor {
Left,
Center,
Right,
}
pub enum FollowState {
None,
Initialized(f32)
}
// 1.6 **Passing params**: When passing params to `construct!(..)` you have to pass all required
// for Sequence params, or you will get the comilation error. You can omit non-required params.
fn create_elements() {
// omit everithing, default param values will be used
let (rect, node, /* nothing */) = construct!(Rect);
assert_eq!(node.hidden, false);
assert_eq!(rect.size.0, 0.);
// you have to pass target to Follow, the rest can be omited..
let (follow, node) = construct!(Follow {
.target: Entity
});
assert_eq!(follow.offset.0, 0.);
assert_eq!(node.hidden, false);
// ..or specified:
let (follow, node) = construct!(Follow {
.hidden,
.target: Entity,
.offset: (10., 10.),
// last_computed_distance param is skipped, uncomenting
// the next line will result in compilation error
// error: no field `last_computed_distance` on type `&follow_construct::Params`
// .last_computed_distance: 10.
});
assert_eq!(follow.offset.0, 10.);
assert_eq!(node.hidden, true);
}
// ### Design and Methods
// 2.1 **Designs and Methods**: Every Construct has its own Design. You can implement methods for
// a Construct's design:
impl NodeDesign {
pub fn move_to(&self, entity: Entity, position: (f32, f32)) { }
}
impl RectDesign {
pub fn expand_to(&self, entity: Entity, size: (f32, f32)) { }
}
// 2.2 **Calling Methods**: You can call methods on a Construct's design. Method resolution
// follows the sequence order:
fn use_design() {
let rect_entity = Entity;
design!(Rect).expand_to(rect_entity, (10., 10.));
design!(Rect).move_to(rect_entity, (10., 10.)); // move_to implemented for NodeDesign
}
// ### Segments
// 3.1 **Segments**: Segments allow you to define and insert segments into a Construct's
// sequence:
#[derive(Segment)]
pub struct Input {
disabled: bool,
}
#[derive(Construct)]
#[construct(Button -> Input -> Rect)]
pub struct Button {
pressed: bool,
}
// 3.2 **Sequence with Segments**: The Sequence for Button becomes
// `Button -> Input -> Rect -> Node -> Nothing`. You can instance the entire sequence of a
// Construct containing segments within a single `construct!` call:
fn create_button() {
let (button, input, rect, node) = construct!(Button {
.disabled: true,
});
assert_eq!(button.pressed, false);
assert_eq!(input.disabled, true);
assert_eq!(rect.size.0, 0.);
assert_eq!(node.position.0, 0.);
}
// 3.3 **Segment Design**: Segment has its own Design as well. And the method call resolves
// within the Sequence order as well. Segment's designes has one generic parameter - the next
// segment/construct, so you have to respect it when implement Segment's Design:
impl<T> InputDesign<T> {
fn focus(&self, entity: Entity) {
/* do the focus stuff */
}
}
fn focus_button() {
let btn = Entity;
design!(Button).focus(btn);
}
// ### Props
// 4.1 **Props**: By deriving Constructs or Segments you also get the ability to set and get
// properties on items with respect of Sequence:
fn button_props() {
let (mut button, mut input, mut rect, mut node) = construct!(Button);
// You can access to props knowing only the top-level Construct
// Prop<Node, (f32, f32)>
let pos = prop!(Button.position);
// Prop<Rect, (f32, f32)>
let size = prop!(Button.size);
// Prop<Input, bool>
let disabled = prop!(Button.disabled);
// Prop<Button, bool>
let pressed = prop!(Button.pressed);
// You can read props. You have to pass exact item to the get()
let x = pos.get(&node).as_ref().0;
let w = size.get(&rect).as_ref().0;
let is_disabled = *disabled.get(&input).as_ref();
let is_pressed = *pressed.get(&button).as_ref();
assert_eq!(0., x);
assert_eq!(0., w);
assert_eq!(false, is_disabled);
assert_eq!(false, is_pressed);
// You can set props. You have to pass exact item to set()
pos.set(&mut node, (1., 1.));
size.set(&mut rect, (10., 10.));
disabled.set(&mut input, true);
pressed.set(&mut button, true);
assert_eq!(node.position.0, 1.);
assert_eq!(rect.size.0, 10.);
assert_eq!(input.disabled, true);
assert_eq!(button.pressed, true);
}
// 4.2 **Expand props**: If you have field with Construct type, you can access this fields props as well:
#[derive(Construct, Default)]
pub struct Vec2 {
x: f32,
y: f32,
}
#[derive(Construct)]
pub struct Node2d {
#[prop(construct)] // You have to mark expandable props with #[prop(construct)]
position: Vec2,
}
fn modify_position_x() {
let mut node = construct!(Node2d);
assert_eq!(node.position.x, 0.);
assert_eq!(node.position.y, 0.);
// Prop<Node2d, f32>
let x = prop!(Node2d.position.x);
x.set(&mut node, 100.);
assert_eq!(node.position.x, 100.);
assert_eq!(node.position.y, 0.);
}
// ### Custom Constructors
// 5.1 **Custom Constructors**: Sometimes you may want to derive Construct for a foreign type
// or provide a custom constructor/props for your type. You can use `derive_construct!` for
// this purpose:
pub struct ProgressBar {
min: f32,
val: f32,
max: f32,
}
impl ProgressBar {
pub fn min(&self) -> f32 {
self.min
}
pub fn set_min(&mut self, min: f32) {
self.min = min;
if self.max < min {
self.max = min;
}
if self.val < min {
self.val = min;
}
}
pub fn max(&self) -> f32 {
self.max
}
pub fn set_max(&mut self, max: f32) {
self.max = max;
if self.min > max {
self.min = max;
}
if self.val > max {
self.val = max;
}
}
pub fn val(&self) -> f32 {
self.val
}
pub fn set_val(&mut self, val: f32) {
self.val = val.max(self.min).min(self.max)
}
}
derive_construct! {
// Sequence
seq => ProgressBar -> Rect;
// Constructor, all params with defult values
construct => (min: f32 = 0., max: f32 = 1., val: f32 = 0.) -> {
if max < min {
max = min;
}
val = val.min(max).max(min);
Self { min, val, max }
};
// Props using getters and setters
props => {
min: f32 = [min, set_min];
max: f32 = [max, set_max];
val: f32 = [val, set_val];
};
}
// 5.2 **Using Custom Constructors**: The provided constructor will be called when creating
// instances:
fn create_progress_bar() {
let (pb, _, _) = construct!(ProgressBar { .val: 100. });
assert_eq!(pb.min, 0.);
assert_eq!(pb.max, 1.);
assert_eq!(pb.val, 1.);
}
// 5.3 **Custom Construct Props**: In the example above `derive_construct!` declares props using
// getters and setters. This setters and getters are called when you use `Prop::get`
// and `Prop::set`
fn modify_progress_bar() {
let (mut pb, _, _) = construct!(ProgressBar);
let min = prop!(ProgressBar.min);
let val = prop!(ProgressBar.val);
let max = prop!(ProgressBar.max);
assert_eq!(pb.val, 0.);
val.set(&mut pb, 2.);
assert_eq!(pb.val, 1.0); //because default for max = 1.0
min.set(&mut pb, 5.);
max.set(&mut pb, 10.);
assert_eq!(pb.min, 5.);
assert_eq!(pb.val, 5.);
assert_eq!(pb.max, 10.);
}
// 5.3 **Deriving Segments**: You can derive Segments in a similar way:
pub struct Range {
min: f32,
max: f32,
val: f32,
}
derive_segment! {
// use `seg` to provide type you want to derive Segment
seg => Range;
construct => (min: f32 = 0., max: f32 = 1., val: f32 = 0.) -> {
if max < min {
max = min;
}
val = val.min(max).max(min);
Self { min, val, max }
};
// Props using fields directly
props => {
min: f32 = value;
max: f32 = value;
val: f32 = value;
};
}
#[derive(Construct)]
#[construct(Slider -> Range -> Rect)]
pub struct Slider;
fn create_slider() {
let (slider, range, _, _) = construct!(Slider {
.val: 10.
});
assert_eq!(range.min, 0.0);
assert_eq!(range.max, 1.0);
assert_eq!(range.val, 1.0);
}
fn main() {
create_node();
create_elements();
create_sequence();
use_design();
create_button();
button_props();
modify_position_x();
focus_button();
create_progress_bar();
modify_progress_bar();
create_slider();
}