1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!#[rustfmt::skip]
#![allow(unused_variables)]

// You've got to start somewhere
use constructivism::*;

// ### Constructs and Sequences

// 1.1  **Constructs**: Constructivism revolves around the concept of Constructs.

#[derive(Construct)]
pub struct Node {
    hidden: bool,
    position: (f32, f32),
}

// 1.2  **Constructing**: You can use the `construct!` macro to create instances of Constructs.
//      Please ***note*** the dots at the beginning of the each param, they are required and you
//      will find this syntax quite useful.

fn create_node() {
    let node = construct!(Node {
        .position: (10., 10.),
        .hidden: true,
    });
    assert_eq!(node.position.0, 10.);
    assert_eq!(node.hidden, true);
}

// 1.3  **Sequences**: A Construct can be declared only in front of another Construct.
//      `constructivism` comes with only Nothing, () construct. The `Self -> Base` relation
//      called Sequence in `constrcutivism`. You can omit the Sequence declaration,
//      `Self -> Nothing` used in this case. If you want to derive Construct on the top of another
//      meaningful Construct, you have to specify Sequence directly using
//      `#[construct(/* Sequence */)]` attribute.

#[derive(Construct)]
#[construct(Rect -> Node)]
pub struct Rect {
    size: (f32, f32),
}

// 1.4  **Constructing Sequences**: The Sequence for the Rect  in example above becomes
//      `Rect -> Node -> Nothing`. You can `construct!` the entire sequence within a single call:

fn create_sequence() {
    let (rect, node /* nothing */) = construct!(Rect {
        .hidden,                        // You can write just `.hidden` instead of `.hidden: true`
        .position: (10., 10.),
        .size: (10., 10.),
    });
    assert_eq!(rect.size.0, 10.);
    assert_eq!(node.position.1, 10.);
    assert_eq!(node.hidden, true);
}


// 1.5  **Params**: There are different kind of Params (the things you passing to `construct!(..)`):
//      - Common: use `Default::default()` if not passed to `construct!(..)`
//      - Default: use provided value if not passed to `construct!(..)`
//      - Required: must be passed to `construct!(..)`
//      - Skip: can't be passed to `construct!(..)`, use Default::default() or provided value
//      You configure behaviour using `#[param]` attribute when deriving:

#[derive(Construct)]
#[construct(Follow -> Node)]
pub struct Follow {
    offset: (f32, f32),                 // Common, no #[param]

    #[param(required)]                  // Required
    target: Entity,
    
    #[param(default = Anchor::Center)]  // Default
    anchor: Anchor,

    #[param(skip)]                      // Skip with Default::default()
    last_computed_distance: f32,

    #[param(skip = FollowState::None)]  // Skip with provided value
    state: FollowState,
}

#[derive(PartialEq, Debug, Copy, Clone)]
pub struct Entity;

pub enum Anchor {
    Left,
    Center,
    Right,
}

pub enum FollowState {
    None,
    Initialized(f32)
}

// 1.6  **Passing params**: When passing params to `construct!(..)` you have to pass all required
//      for Sequence params, or you will get the comilation error. You can omit non-required params. 

fn create_elements() {
    // omit everithing, default param values will be used
    let (rect, node, /* nothing */) = construct!(Rect);
    assert_eq!(node.hidden, false);
    assert_eq!(rect.size.0, 0.);

    // you have to pass target to Follow, the rest can be omited..
    let (follow, node) = construct!(Follow {
        .target: Entity
    });
    assert_eq!(follow.offset.0, 0.);
    assert_eq!(node.hidden, false);

    // ..or specified:
    let (follow, node) = construct!(Follow {
        .hidden,
        .target: Entity,
        .offset: (10., 10.),

        // last_computed_distance param is skipped, uncomenting
        // the next line will result in compilation error
        // error: no field `last_computed_distance` on type `&follow_construct::Params`
        
        // .last_computed_distance: 10.
    });
    assert_eq!(follow.offset.0, 10.);
    assert_eq!(node.hidden, true);
}

// ### Design and Methods

// 2.1  **Designs and Methods**: Every Construct has its own Design. You can implement methods for
//      a Construct's design:
impl NodeDesign {
    pub fn move_to(&self, entity: Entity, position: (f32, f32)) { }
}

impl RectDesign {
    pub fn expand_to(&self, entity: Entity, size: (f32, f32)) { }
}

// 2.2  **Calling Methods**: You can call methods on a Construct's design. Method resolution
//      follows the sequence order:
fn use_design() {
    let rect_entity = Entity;
    design!(Rect).expand_to(rect_entity, (10., 10.));
    design!(Rect).move_to(rect_entity, (10., 10.)); // move_to implemented for NodeDesign
}

// ### Segments

// 3.1  **Segments**: Segments allow you to define and insert segments into a Construct's
//      sequence:
#[derive(Segment)]
pub struct Input {
    disabled: bool,
}

#[derive(Construct)]
#[construct(Button -> Input -> Rect)]
pub struct Button {
    pressed: bool,
}

// 3.2  **Sequence with Segments**: The Sequence for Button becomes
//      `Button -> Input -> Rect -> Node -> Nothing`. You can instance the entire sequence of a
//      Construct containing segments within a single `construct!` call:
fn create_button() {
    let (button, input, rect, node) = construct!(Button {
        .disabled: true,
    });
    assert_eq!(button.pressed, false);
    assert_eq!(input.disabled, true);
    assert_eq!(rect.size.0, 0.);
    assert_eq!(node.position.0, 0.);
}

// 3.3  **Segment Design**: Segment has its own Design as well. And the method call resolves
//      within the Sequence order as well. Segment's designes has one generic parameter - the next
//      segment/construct, so you have to respect it when implement Segment's Design:
impl<T> InputDesign<T> {
    fn focus(&self, entity: Entity) {
        /* do the focus stuff */
    }
}

fn focus_button() {
    let btn = Entity;
    design!(Button).focus(btn);
}

// ### Props

// 4.1  **Props**: By deriving Constructs or Segments you also get the ability to set and get
//      properties on items with respect of Sequence:

fn button_props() {
    let (mut button, mut input, mut rect, mut node) = construct!(Button);

    // You can access to props knowing only the top-level Construct
    // Prop<Node, (f32, f32)>
    let pos = prop!(Button.position);
    // Prop<Rect, (f32, f32)>
    let size = prop!(Button.size);
    // Prop<Input, bool>
    let disabled = prop!(Button.disabled);
    // Prop<Button, bool>
    let pressed = prop!(Button.pressed);

    // You can read props. You have to pass exact item to the get()
    let x = pos.get(&node).as_ref().0;
    let w = size.get(&rect).as_ref().0;
    let is_disabled = *disabled.get(&input).as_ref();
    let is_pressed = *pressed.get(&button).as_ref();
    assert_eq!(0., x);
    assert_eq!(0., w);
    assert_eq!(false, is_disabled);
    assert_eq!(false, is_pressed);

    // You can set props. You have to pass exact item to set()
    pos.set(&mut node, (1., 1.));
    size.set(&mut rect, (10., 10.));
    disabled.set(&mut input, true);
    pressed.set(&mut button, true);
    assert_eq!(node.position.0, 1.);
    assert_eq!(rect.size.0, 10.);
    assert_eq!(input.disabled, true);
    assert_eq!(button.pressed, true);
}

// 4.2 **Expand props**: If you have field with Construct type, you can access this fields props as well:

#[derive(Construct, Default)]
pub struct Vec2 {
    x: f32,
    y: f32,
}

#[derive(Construct)]
pub struct Node2d {
    #[prop(construct)] // You have to mark expandable props with #[prop(construct)]
    position: Vec2,
}

fn modify_position_x() {
    let mut node = construct!(Node2d);
    assert_eq!(node.position.x, 0.);
    assert_eq!(node.position.y, 0.);

    // Prop<Node2d, f32>
    let x = prop!(Node2d.position.x);

    x.set(&mut node, 100.);
    assert_eq!(node.position.x, 100.);
    assert_eq!(node.position.y, 0.);
}

// ### Custom Constructors

// 5.1  **Custom Constructors**: Sometimes you may want to derive Construct for a foreign type
//      or provide a custom constructor/props for your type. You can use `derive_construct!` for
//      this purpose:
pub struct ProgressBar {
    min: f32,
    val: f32,
    max: f32,
}
impl ProgressBar {
    pub fn min(&self) -> f32 {
        self.min
    }
    pub fn set_min(&mut self, min: f32) {
        self.min = min;
        if self.max < min {
            self.max = min;
        }
        if self.val < min {
            self.val = min;
        }
    }
    pub fn max(&self) -> f32 {
        self.max
    }
    pub fn set_max(&mut self, max: f32) {
        self.max = max;
        if self.min > max {
            self.min = max;
        }
        if self.val > max {
            self.val = max;
        }
    }
    pub fn val(&self) -> f32 {
        self.val
    }
    pub fn set_val(&mut self, val: f32) {
        self.val = val.max(self.min).min(self.max)
    }
}

derive_construct! {
    // Sequence
    seq => ProgressBar -> Rect;

    // Constructor, all params with defult values
    construct => (min: f32 = 0., max: f32 = 1., val: f32 = 0.) -> {
        if max < min {
            max = min;
        }
        val = val.min(max).max(min);
        Self { min, val, max }
    };

    // Props using getters and setters
    props => {
        min: f32 = [min, set_min];
        max: f32 = [max, set_max];
        val: f32 = [val, set_val];
    };
}

// 5.2  **Using Custom Constructors**: The provided constructor will be called when creating
//      instances:
fn create_progress_bar() {
    let (pb, _, _) = construct!(ProgressBar { .val: 100. });
    assert_eq!(pb.min, 0.);
    assert_eq!(pb.max, 1.);
    assert_eq!(pb.val, 1.);
}

// 5.3  **Custom Construct Props**: In the example above `derive_construct!` declares props using
//      getters and setters. This setters and getters are called when you use `Prop::get`
//      and `Prop::set`
fn modify_progress_bar() {
    let (mut pb, _, _) = construct!(ProgressBar);
    let min = prop!(ProgressBar.min);
    let val = prop!(ProgressBar.val);
    let max = prop!(ProgressBar.max);

    assert_eq!(pb.val, 0.);

    val.set(&mut pb, 2.);
    assert_eq!(pb.val, 1.0); //because default for max = 1.0

    min.set(&mut pb, 5.);
    max.set(&mut pb, 10.);
    assert_eq!(pb.min, 5.);
    assert_eq!(pb.val, 5.);
    assert_eq!(pb.max, 10.);
}

// 5.3  **Deriving Segments**: You can derive Segments in a similar way:
pub struct Range {
    min: f32,
    max: f32,
    val: f32,
}
derive_segment! {
    // use `seg` to provide type you want to derive Segment
    seg => Range;
    construct => (min: f32 = 0., max: f32 = 1., val: f32 = 0.) -> {
        if max < min {
            max = min;
    }
        val = val.min(max).max(min);
        Self { min, val, max }
    };
    // Props using fields directly
    props => {
        min: f32 = value;
        max: f32 = value;
        val: f32 = value;
    };
}

#[derive(Construct)]
#[construct(Slider -> Range -> Rect)]
pub struct Slider;

fn create_slider() {
    let (slider, range, _, _) = construct!(Slider {
        .val: 10.
    });
    assert_eq!(range.min, 0.0);
    assert_eq!(range.max, 1.0);
    assert_eq!(range.val, 1.0);
}

fn main() {
    create_node();
    create_elements();
    create_sequence();
    use_design();
    create_button();
    button_props();
    modify_position_x();
    focus_button();
    create_progress_bar();
    modify_progress_bar();
    create_slider();
}