1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
//! Near-optimal compression on a queue ("first in first out")
//!
//! This module provides an implementation of the Range Coding algorithm \[1], an entropy
//! coder with near-optimal compression effectiveness that operates as a *queue* data
//! structure. Range Coding is a more computationally efficient variant of Arithmetic
//! Coding.
//!
//! # Comparison to sister module `stack`
//!
//! Range Coding operates as a *queue*: decoding a sequence of symbols yields the symbols in
//! the same order in which they were encoded. This is unlike the case with the [`AnsCoder`]
//! in the sister module [`stack`], which decodes in reverse order. Therefore, Range Coding
//! is typically the preferred method for autoregressive models. On the other hand, the
//! provided implementation of Range Coding uses two distinct data structures,
//! [`RangeEncoder`] and [`RangeDecoder`], for encoding and decoding, respectively. This
//! means that, unlike the case with the `AnsCoder`, encoding and decoding operations on a
//! Range Coder cannot be interleaved: once you've *sealed* a `RangeEncoder` (e.g., by
//! calling [`.into_compressed()`] on it) you cannot add any more compressed data onto it.
//! This makes Range Coding difficult to use for advanced compression techniques such as
//! bits-back coding with hierarchical models.
//!
//! The parent module contains a more detailed discussion of the [differences between ANS
//! Coding and Range Coding](super#which-stream-code-should-i-use) .
//!
//! # References
//!
//! \[1] Pasco, Richard Clark. Source coding algorithms for fast data compression. Diss.
//! Stanford University, 1976.
//!
//! [`AnsCoder`]: super::stack::AnsCoder
//! [`stack`]: super::stack
//! [`.into_compressed()`]: RangeEncoder::into_compressed

use alloc::vec::Vec;
use core::{
    borrow::Borrow,
    fmt::{Debug, Display},
    marker::PhantomData,
    num::NonZeroUsize,
    ops::Deref,
};

use num::cast::AsPrimitive;

use super::{
    model::{DecoderModel, EncoderModel},
    Code, Decode, Encode, IntoDecoder,
};
use crate::{
    backends::{AsReadWords, BoundedReadWords, Cursor, IntoReadWords, ReadWords, WriteWords},
    BitArray, CoderError, DefaultEncoderError, DefaultEncoderFrontendError, NonZeroBitArray, Pos,
    PosSeek, Queue, Seek, UnwrapInfallible,
};

/// Type of the internal state used by [`RangeEncoder<Word, State>`] and
/// [`RangeDecoder<Word, State>`]. Relevant for [`Seek`]ing.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub struct RangeCoderState<Word, State: BitArray> {
    lower: State,

    /// Invariant: `range >= State::one() << (State::BITS - Word::BITS)`
    /// Therefore, the highest order `Word` of `lower` is always sufficient to
    /// identify the current interval, so only it has to be flushed at the end.
    range: State::NonZero,

    /// We keep track of the `Word` type so that we can statically enforce
    /// the invariants for `lower` and `range`.
    phantom: PhantomData<Word>,
}

impl<Word: BitArray, State: BitArray> RangeCoderState<Word, State> {
    #[allow(clippy::result_unit_err)]
    pub fn new(lower: State, range: State) -> Result<Self, ()> {
        if range >> (State::BITS - Word::BITS) == State::zero() {
            Err(())
        } else {
            Ok(Self {
                lower,
                range: range.into_nonzero().expect("We checked above."),
                phantom: PhantomData,
            })
        }
    }

    /// Get the lower bound of the current range (inclusive)
    pub fn lower(&self) -> State {
        self.lower
    }

    /// Get the size of the current range
    pub fn range(&self) -> State::NonZero {
        self.range
    }
}

impl<Word: BitArray, State: BitArray> Default for RangeCoderState<Word, State> {
    fn default() -> Self {
        Self {
            lower: State::zero(),
            range: State::max_value().into_nonzero().expect("max_value() != 0"),
            phantom: PhantomData,
        }
    }
}

#[derive(Debug, Clone)]
pub struct RangeEncoder<Word, State, Backend = Vec<Word>>
where
    Word: BitArray,
    State: BitArray,
    Backend: WriteWords<Word>,
{
    bulk: Backend,
    state: RangeCoderState<Word, State>,
    situation: EncoderSituation<Word>,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum EncoderSituation<Word> {
    Normal,

    /// Wraps `num_inverted` and `first_inverted_lower_word`
    Inverted(NonZeroUsize, Word),
}

impl<Word> Default for EncoderSituation<Word> {
    fn default() -> Self {
        Self::Normal
    }
}

/// Type alias for an [`RangeEncoder`] with sane parameters for typical use cases.
pub type DefaultRangeEncoder<Backend = Vec<u32>> = RangeEncoder<u32, u64, Backend>;

/// Type alias for a [`RangeEncoder`] for use with lookup models
///
/// This encoder has a smaller word size and internal state than [`DefaultRangeEncoder`].
/// This allows you to use lookup models when decoding data that was encoded with this
/// coder, see [`SmallRangeDecoder`], as well as [`SmallContiguousLookupDecoderModel`] and
/// [`SmallNonContiguousLookupDecoderModel`].
///
/// [lookup models]: super::model::lookup
/// [`SmallContiguousLookupDecoderModel`]: super::model::SmallContiguousLookupDecoderModel
/// [`SmallNonContiguousLookupDecoderModel`]: super::model::SmallNonContiguousLookupDecoderModel
pub type SmallRangeEncoder<Backend = Vec<u16>> = RangeEncoder<u16, u32, Backend>;

impl<Word, State, Backend> Code for RangeEncoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word>,
{
    type State = RangeCoderState<Word, State>;
    type Word = Word;

    fn state(&self) -> Self::State {
        self.state
    }
}

impl<Word, State, Backend> PosSeek for RangeEncoder<Word, State, Backend>
where
    Word: BitArray,
    State: BitArray,
    Backend: WriteWords<Word> + PosSeek,
    Self: Code,
{
    type Position = (Backend::Position, <Self as Code>::State);
}

impl<Word, State, Backend> Pos for RangeEncoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + Pos<Position = usize>,
{
    fn pos(&self) -> Self::Position {
        let num_inverted = if let EncoderSituation::Inverted(num_inverted, _) = self.situation {
            num_inverted.get()
        } else {
            0
        };
        (self.bulk.pos() + num_inverted, self.state())
    }
}

impl<Word, State, Backend> Default for RangeEncoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + Default,
{
    /// This is essentially the same as `#[derive(Default)]`, except for the assertions on
    /// `State::BITS` and `Word::BITS`.
    fn default() -> Self {
        Self::with_backend(Backend::default())
    }
}

impl<Word, State> RangeEncoder<Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// Creates an empty encoder for range coding.
    pub fn new() -> Self {
        assert!(State::BITS >= 2 * Word::BITS);
        assert_eq!(State::BITS % Word::BITS, 0);

        Self {
            bulk: Vec::new(),
            state: RangeCoderState::default(),
            situation: EncoderSituation::Normal,
        }
    }
}

impl<Word, State> From<RangeEncoder<Word, State>> for Vec<Word>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    fn from(val: RangeEncoder<Word, State>) -> Self {
        val.into_compressed().unwrap_infallible()
    }
}

impl<Word, State, Backend> RangeEncoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word>,
{
    /// Assumes that the `backend` is in a state where the encoder can start writing as if
    /// it was an empty backend. If there's already some compressed data on `backend`, then
    /// this method will just concatanate the new sequence of `Word`s to the existing
    /// sequence of `Word`s without gluing them together. This is likely not what you want
    /// since you won't be able to decode the data in one go (however, it is Ok to
    /// concatenate arbitrary data to the output of a `RangeEncoder`; it won't invalidate
    /// the existing data).
    ///
    /// If you need an entropy coder that can be interrupted and serialized/deserialized
    /// (i.e., an encoder that can encode some symbols, return the compressed bit string as
    /// a sequence of `Words`, load the `Words` back in at a later point and then encode
    /// some more symbols), then consider using an [`AnsCoder`].
    ///
    /// TODO: rename to `with_write_backend` and then add the same method to `AnsCoder`
    ///
    /// [`AnsCoder`]: super::stack::AnsCoder
    pub fn with_backend(backend: Backend) -> Self {
        assert!(State::BITS >= 2 * Word::BITS);
        assert_eq!(State::BITS % Word::BITS, 0);

        Self {
            bulk: backend,
            state: RangeCoderState::default(),
            situation: EncoderSituation::Normal,
        }
    }

    /// Check if no data has been encoded yet.
    pub fn is_empty<'a>(&'a self) -> bool
    where
        Backend: AsReadWords<'a, Word, Queue>,
        Backend::AsReadWords: BoundedReadWords<Word, Queue>,
    {
        self.state.range.get() == State::max_value() && self.bulk.as_read_words().is_exhausted()
    }

    /// Same as `Encoder::maybe_full`, but can be called on a concrete type without type
    /// annotations.
    pub fn maybe_full(&self) -> bool {
        self.bulk.maybe_full()
    }

    /// Same as IntoDecoder::into_decoder(self) but can be used for any `PRECISION`
    /// and therefore doesn't require type arguments on the caller side.
    ///
    /// TODO: there should also be a `decoder()` method that takes `&mut self`
    #[allow(clippy::result_unit_err)]
    pub fn into_decoder(self) -> Result<RangeDecoder<Word, State, Backend::IntoReadWords>, ()>
    where
        Backend: IntoReadWords<Word, Queue>,
    {
        // TODO: return proper error (or just box it up).
        RangeDecoder::from_compressed(self.into_compressed().map_err(|_| ())?).map_err(|_| ())
    }

    pub fn into_compressed(mut self) -> Result<Backend, Backend::WriteError> {
        self.seal()?;
        Ok(self.bulk)
    }

    /// Private method; flushes held-back words if in inverted situation and adds one or two
    /// additional words that identify the range regardless of what the compressed data may
    /// be concatenated with (unless no symbols have been encoded yet, in which case this is
    /// a no-op).
    ///
    /// Doesn't change `self.state` or `self.situation` so that this operation can be
    /// reversed if the backend supports removing words (see method `unseal`);
    fn seal(&mut self) -> Result<(), Backend::WriteError> {
        if self.state.range.get() == State::max_value() {
            // This condition only holds upon initialization because encoding a symbol first
            // reduces `range` and then only (possibly) right-shifts it, which introduces
            // some zero bits. We treat this case special and don't emit any words, so that
            // an empty sequence of symbols gets encoded to an empty sequence of words.
            return Ok(());
        }

        let point = self
            .state
            .lower
            .wrapping_add(&((State::one() << (State::BITS - Word::BITS)) - State::one()));

        if let EncoderSituation::Inverted(num_inverted, first_inverted_lower_word) = self.situation
        {
            let (first_word, consecutive_words) = if point < self.state.lower {
                // Unlikely case (addition has wrapped).
                (first_inverted_lower_word + Word::one(), Word::zero())
            } else {
                // Likely case.
                (first_inverted_lower_word, Word::max_value())
            };

            self.bulk.write(first_word)?;
            for _ in 1..num_inverted.get() {
                self.bulk.write(consecutive_words)?;
            }
        }

        let point_word = (point >> (State::BITS - Word::BITS)).as_();
        self.bulk.write(point_word)?;

        let upper_word = (self.state.lower.wrapping_add(&self.state.range.get())
            >> (State::BITS - Word::BITS))
            .as_();
        if upper_word == point_word {
            self.bulk.write(Word::zero())?;
        }

        Ok(())
    }

    fn num_seal_words(&self) -> usize {
        if self.state.range.get() == State::max_value() {
            return 0;
        }

        let point = self
            .state
            .lower
            .wrapping_add(&((State::one() << (State::BITS - Word::BITS)) - State::one()));
        let point_word = (point >> (State::BITS - Word::BITS)).as_();
        let upper_word = (self.state.lower.wrapping_add(&self.state.range.get())
            >> (State::BITS - Word::BITS))
            .as_();
        let mut count = if upper_word == point_word { 2 } else { 1 };

        if let EncoderSituation::Inverted(num_inverted, _) = self.situation {
            count += num_inverted.get();
        }
        count
    }

    /// Returns the number of compressed words on the ans.
    ///
    /// This includes a constant overhead of between one and two words unless the
    /// coder is completely empty.
    ///
    /// This method returns the length of the slice, the `Vec<Word>`, or the iterator
    /// that would be returned by [`get_compressed`], [`into_compressed`], or
    /// [`iter_compressed`], respectively, when called at this time.
    ///
    /// See also [`num_bits`].
    ///
    /// [`get_compressed`]: #method.get_compressed
    /// [`into_compressed`]: #method.into_compressed
    /// [`iter_compressed`]: #method.iter_compressed
    /// [`num_bits`]: #method.num_bits
    pub fn num_words<'a>(&'a self) -> usize
    where
        Backend: AsReadWords<'a, Word, Queue>,
        Backend::AsReadWords: BoundedReadWords<Word, Queue>,
    {
        self.bulk.as_read_words().remaining() + self.num_seal_words()
    }

    /// Returns the size of the current queue of compressed data in bits.
    ///
    /// This includes some constant overhead unless the coder is completely empty
    /// (see [`num_words`](#method.num_words)).
    ///
    /// The returned value is a multiple of the bitlength of the compressed word
    /// type `Word`.
    pub fn num_bits<'a>(&'a self) -> usize
    where
        Backend: AsReadWords<'a, Word, Queue>,
        Backend::AsReadWords: BoundedReadWords<Word, Queue>,
    {
        Word::BITS * self.num_words()
    }

    pub fn bulk(&self) -> &Backend {
        &self.bulk
    }
}

impl<Word, State> RangeEncoder<Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    /// Discards all compressed data and resets the coder to the same state as
    /// [`Coder::new`](#method.new).
    pub fn clear(&mut self) {
        self.bulk.clear();
        self.state = RangeCoderState::default();
    }

    /// Assembles the current compressed data into a single slice.
    ///
    /// This method is only implemented for encoders backed by a `Vec<Word>`
    /// because we have to temporarily seal the encoder and then unseal it when the returned
    /// `EncoderGuard` is dropped, which requires precise knowledge of the backend (and
    /// which is also the reason why this method takes a `&mut self` receiver). If you're
    /// using a different backend than a `Vec`, consider calling [`into_compressed`]
    /// instead.
    ///
    /// [`into_compressed`]: Self::into_compressed
    pub fn get_compressed(&mut self) -> EncoderGuard<'_, Word, State> {
        EncoderGuard::new(self)
    }

    // TODO: implement `iter_compressed`

    /// A decoder for temporary use.
    ///
    /// Once the returned decoder gets dropped, you can continue using this encoder. If you
    /// don't need this flexibility, call [`into_decoder`] instead.
    ///
    /// This method is only implemented for encoders backed by a `Vec<Word>`
    /// because we have to temporarily seal the encoder and then unseal it when the returned
    /// decoder is dropped, which requires precise knowledge of the backend (and which is
    /// also the reason why this method takes a `&mut self`receiver). If you're using a
    /// different backend than a `Vec`, consider calling [`into_decoder`] instead.
    ///
    /// [`into_decoder`]: Self::into_decoder
    pub fn decoder(
        &mut self,
    ) -> RangeDecoder<Word, State, Cursor<Word, EncoderGuard<'_, Word, State>>> {
        RangeDecoder::from_compressed(self.get_compressed()).unwrap_infallible()
    }

    fn unseal(&mut self) {
        for _ in 0..self.num_seal_words() {
            let word = self.bulk.pop();
            debug_assert!(word.is_some());
        }
    }
}

impl<Word, State, Backend, const PRECISION: usize> IntoDecoder<PRECISION>
    for RangeEncoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + IntoReadWords<Word, Queue>,
{
    type IntoDecoder = RangeDecoder<Word, State, Backend::IntoReadWords>;

    fn into_decoder(self) -> Self::IntoDecoder {
        self.into()
    }
}

impl<Word, State, Backend, const PRECISION: usize> Encode<PRECISION>
    for RangeEncoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word>,
{
    type FrontendError = DefaultEncoderFrontendError;
    type BackendError = Backend::WriteError;

    fn encode_symbol<D>(
        &mut self,
        symbol: impl Borrow<D::Symbol>,
        model: D,
    ) -> Result<(), DefaultEncoderError<Self::BackendError>>
    where
        D: EncoderModel<PRECISION>,
        D::Probability: Into<Self::Word>,
        Self::Word: AsPrimitive<D::Probability>,
    {
        // We maintain the following invariant (*):
        //   range >= State::one() << (State::BITS - Word::BITS)

        let (left_sided_cumulative, probability) = model
            .left_cumulative_and_probability(symbol)
            .ok_or_else(|| DefaultEncoderFrontendError::ImpossibleSymbol.into_coder_error())?;

        let scale = self.state.range.get() >> PRECISION;
        // This cannot overflow since `scale * probability <= (range >> PRECISION) << PRECISION`
        self.state.range = (scale * probability.get().into().into())
            .into_nonzero()
            .ok_or_else(|| DefaultEncoderFrontendError::ImpossibleSymbol.into_coder_error())?;
        let new_lower = self
            .state
            .lower
            .wrapping_add(&(scale * left_sided_cumulative.into().into()));

        if let EncoderSituation::Inverted(num_inverted, first_inverted_lower_word) = self.situation
        {
            // unlikely branch
            if new_lower.wrapping_add(&self.state.range.get()) > new_lower {
                // We've transitioned from an inverted to a normal situation.

                let (first_word, consecutive_words) = if new_lower < self.state.lower {
                    (first_inverted_lower_word + Word::one(), Word::zero())
                } else {
                    (first_inverted_lower_word, Word::max_value())
                };

                self.bulk.write(first_word)?;
                for _ in 1..num_inverted.get() {
                    self.bulk.write(consecutive_words)?;
                }

                self.situation = EncoderSituation::Normal;
            }
        }

        self.state.lower = new_lower;

        if self.state.range.get() < State::one() << (State::BITS - Word::BITS) {
            // Invariant `range >= State::one() << (State::BITS - Word::BITS)` is
            // violated. Since `left_cumulative_and_probability` succeeded, we know that
            // `probability != 0` and therefore:
            //   range >= scale * probability = (old_range >> PRECISION) * probability
            //         >= old_range >> PRECISION
            //         >= old_range >> Word::BITS
            // where `old_range` is the `range` at method entry, which satisfied invariant (*)
            // by assumption. Therefore, the following left-shift restores the invariant:
            self.state.range = unsafe {
                // SAFETY:
                // - `range` is nonzero because it is a `State::NonZero`
                // - Shifting `range` left by `Word::BITS` bits doesn't truncate
                //   because we checked that `range < 1 << (State::BITS - Word::Bits)`.
                (self.state.range.get() << Word::BITS).into_nonzero_unchecked()
            };

            let lower_word = (self.state.lower >> (State::BITS - Word::BITS)).as_();
            self.state.lower = self.state.lower << Word::BITS;

            if let EncoderSituation::Inverted(num_inverted, _) = &mut self.situation {
                // Transition from an inverted to an inverted situation (TODO: mark as unlikely branch).
                *num_inverted = NonZeroUsize::new(num_inverted.get().wrapping_add(1))
                    .expect("Cannot encode more symbols than what's addressable with usize.");
            } else if self.state.lower.wrapping_add(&self.state.range.get()) > self.state.lower {
                // Transition from a normal to a normal situation (the most common case).
                self.bulk.write(lower_word)?;
            } else {
                // Transition from a normal to an inverted situation.
                self.situation =
                    EncoderSituation::Inverted(NonZeroUsize::new(1).expect("1 != 0"), lower_word);
            }
        }

        Ok(())
    }

    fn maybe_full(&self) -> bool {
        RangeEncoder::maybe_full(self)
    }
}

#[derive(Debug)]
pub struct RangeDecoder<Word, State, Backend>
where
    Word: BitArray,
    State: BitArray,
    Backend: ReadWords<Word, Queue>,
{
    bulk: Backend,

    state: RangeCoderState<Word, State>,

    /// Invariant: `point.wrapping_sub(&state.lower) < state.range`
    point: State,
}

/// Type alias for a [`RangeDecoder`] with sane parameters for typical use cases.
pub type DefaultRangeDecoder<Backend = Cursor<u32, Vec<u32>>> = RangeDecoder<u32, u64, Backend>;

/// Type alias for a [`RangeDecoder`] for use with [lookup models]
///
/// This encoder has a smaller word size and internal state than [`DefaultRangeDecoder`]. It
/// is optimized for use with lookup entropy models, in particular with a
/// [`SmallContiguousLookupDecoderModel`] or a [`SmallNonContiguousLookupDecoderModel`].
///
/// # Examples
///
/// See [`SmallContiguousLookupDecoderModel`] and [`SmallNonContiguousLookupDecoderModel`].
///
/// # See also
///
/// - [`SmallRangeEncoder`]
///
/// [lookup models]: super::model::SmallContiguousLookupDecoderModel
/// [`SmallContiguousLookupDecoderModel`]: super::model::SmallContiguousLookupDecoderModel
/// [`SmallNonContiguousLookupDecoderModel`]: super::model::SmallNonContiguousLookupDecoderModel
pub type SmallRangeDecoder<Backend> = RangeDecoder<u16, u32, Backend>;

impl<Word, State, Backend> RangeDecoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: ReadWords<Word, Queue>,
{
    pub fn from_compressed<Buf>(compressed: Buf) -> Result<Self, Backend::ReadError>
    where
        Buf: IntoReadWords<Word, Queue, IntoReadWords = Backend>,
    {
        assert!(State::BITS >= 2 * Word::BITS);
        assert_eq!(State::BITS % Word::BITS, 0);

        let mut bulk = compressed.into_read_words();
        let point = Self::read_point(&mut bulk)?;

        Ok(RangeDecoder {
            bulk,
            state: RangeCoderState::default(),
            point,
        })
    }

    pub fn with_backend(backend: Backend) -> Result<Self, Backend::ReadError> {
        assert!(State::BITS >= 2 * Word::BITS);
        assert_eq!(State::BITS % Word::BITS, 0);

        let mut bulk = backend;
        let point = Self::read_point(&mut bulk)?;

        Ok(RangeDecoder {
            bulk,
            state: RangeCoderState::default(),
            point,
        })
    }

    pub fn for_compressed<'a, Buf>(compressed: &'a Buf) -> Result<Self, Backend::ReadError>
    where
        Buf: AsReadWords<'a, Word, Queue, AsReadWords = Backend>,
    {
        assert!(State::BITS >= 2 * Word::BITS);
        assert_eq!(State::BITS % Word::BITS, 0);

        let mut bulk = compressed.as_read_words();
        let point = Self::read_point(&mut bulk)?;

        Ok(RangeDecoder {
            bulk,
            state: RangeCoderState::default(),
            point,
        })
    }

    pub fn from_raw_parts(
        _bulk: Backend,
        _state: State,
    ) -> Result<Self, (Backend, RangeCoderState<Word, State>)> {
        assert!(State::BITS >= 2 * Word::BITS);
        assert_eq!(State::BITS % Word::BITS, 0);

        todo!()
    }

    pub fn into_raw_parts(self) -> (Backend, RangeCoderState<Word, State>) {
        (self.bulk, self.state)
    }

    fn read_point<B: ReadWords<Word, Queue>>(bulk: &mut B) -> Result<State, B::ReadError> {
        let mut num_read = 0;
        let mut point = State::zero();
        while let Some(word) = bulk.read()? {
            point = point << Word::BITS | word.into();
            num_read += 1;
            if num_read == State::BITS / Word::BITS {
                break;
            }
        }

        #[allow(clippy::collapsible_if)]
        if num_read < State::BITS / Word::BITS {
            if num_read != 0 {
                point = point << (State::BITS - num_read * Word::BITS);
            }
            // TODO: do we need to advance the Backend's `pos` beyond the end to make
            // `PosBackend` consistent with its implementation for the encoder?
        }

        Ok(point)
    }

    /// Same as `Decoder::maybe_exhausted`, but can be called on a concrete type without
    /// type annotations.
    pub fn maybe_exhausted(&self) -> bool {
        // The maximum possible difference between `point` and `lower`, even if the
        // compressed data was concatenated with a lot of one bits.
        let max_difference =
            ((State::one() << (State::BITS - Word::BITS)) << 1).wrapping_sub(&State::one());

        // The check for `self.state.range == State::max_value()` is for the special case of
        // an empty buffer.
        self.bulk.maybe_exhausted()
            && (self.state.range.get() == State::max_value()
                || self.point.wrapping_sub(&self.state.lower) < max_difference)
    }
}

impl<Word, State, Backend> Code for RangeDecoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: ReadWords<Word, Queue>,
{
    type State = RangeCoderState<Word, State>;
    type Word = Word;

    fn state(&self) -> Self::State {
        self.state
    }
}

impl<Word, State, Backend> PosSeek for RangeDecoder<Word, State, Backend>
where
    Word: BitArray,
    State: BitArray,
    Backend: ReadWords<Word, Queue>,
    Backend: PosSeek,
    Self: Code,
{
    type Position = (Backend::Position, <Self as Code>::State);
}

impl<Word, State, Backend> Seek for RangeDecoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: ReadWords<Word, Queue> + Seek,
{
    fn seek(&mut self, pos_and_state: Self::Position) -> Result<(), ()> {
        let (pos, state) = pos_and_state;

        self.bulk.seek(pos)?;
        self.point = Self::read_point(&mut self.bulk).map_err(|_| ())?;
        self.state = state;

        // TODO: deal with positions very close to end.

        Ok(())
    }
}

impl<Word, State, Backend> From<RangeEncoder<Word, State, Backend>>
    for RangeDecoder<Word, State, Backend::IntoReadWords>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: WriteWords<Word> + IntoReadWords<Word, Queue>,
{
    fn from(encoder: RangeEncoder<Word, State, Backend>) -> Self {
        // TODO: implement a `try_into_decoder` or something instead. Or specialize this
        // method to the case where both read and write error are Infallible, which is
        // probably the only place where this will be used anyway.
        encoder.into_decoder().unwrap()
    }
}

// TODO (implement for infallible case)
// impl<'a, Word, State, Backend> From<&'a mut RangeEncoder<Word, State, Backend>>
//     for RangeDecoder<Word, State, Backend::AsReadWords>
// where
//     Word: BitArray + Into<State>,
//     State: BitArray + AsPrimitive<Word>,
//     Backend: WriteWords<Word> + AsReadWords<'a, Word, Queue>,
// {
//     fn from(encoder: &'a mut RangeEncoder<Word, State, Backend>) -> Self {
//         encoder.as_decoder()
//     }
// }

impl<Word, State, Backend, const PRECISION: usize> Decode<PRECISION>
    for RangeDecoder<Word, State, Backend>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
    Backend: ReadWords<Word, Queue>,
{
    type FrontendError = DecoderFrontendError;

    type BackendError = Backend::ReadError;

    /// Decodes a single symbol and pops it off the compressed data.
    ///
    /// This is a low level method. You usually probably want to call a batch method
    /// like [`decode_symbols`](#method.decode_symbols) or
    /// [`decode_iid_symbols`](#method.decode_iid_symbols) instead.
    ///
    /// This method is called `decode_symbol` rather than `decode_symbol` to stress the
    /// fact that the `Coder` is a stack: `decode_symbol` will return the *last* symbol
    /// that was previously encoded via [`encode_symbol`](#method.encode_symbol).
    ///
    /// Note that this method cannot fail. It will still produce symbols in a
    /// deterministic way even if the coder is empty, but such symbols will not
    /// recover any previously encoded data and will generally have low entropy.
    /// Still, being able to pop off an arbitrary number of symbols can sometimes be
    /// useful in edge cases of, e.g., the bits-back algorithm.
    fn decode_symbol<D>(
        &mut self,
        model: D,
    ) -> Result<D::Symbol, CoderError<Self::FrontendError, Self::BackendError>>
    where
        D: DecoderModel<PRECISION>,
        D::Probability: Into<Self::Word>,
        Self::Word: AsPrimitive<D::Probability>,
    {
        // We maintain the following invariant (*):
        //   point (-) lower < range
        // where (-) denotes wrapping subtraction (in `Self::State`).

        let scale = self.state.range.get() >> PRECISION;
        let quantile = self.point.wrapping_sub(&self.state.lower) / scale;
        if quantile >= State::one() << PRECISION {
            // This can only happen if both of the following conditions apply:
            // (i) we are decoding invalid compressed data; and
            // (ii) we use entropy models with varying `PRECISION`s.
            return Err(CoderError::Frontend(DecoderFrontendError::InvalidData));
        }

        let (symbol, left_sided_cumulative, probability) =
            model.quantile_function(quantile.as_().as_());

        // Update `state` in the same way as we do in `encode_symbol` (see comments there):
        self.state.lower = self
            .state
            .lower
            .wrapping_add(&(scale * left_sided_cumulative.into().into()));
        self.state.range = (scale * probability.get().into().into())
            .into_nonzero()
            .expect("TODO");

        // Invariant (*) is still satisfied at this point because:
        //   (point (-) lower) / scale = (point (-) old_lower) / scale (-) left_sided_cumulative
        //                             = quantile (-) left_sided_cumulative
        //                             < probability
        // Therefore, we have:
        //   point (-) lower < scale * probability <= range

        if self.state.range.get() < State::one() << (State::BITS - Word::BITS) {
            // First update `state` in the same way as we do in `encode_symbol`:
            self.state.lower = self.state.lower << Word::BITS;
            self.state.range = unsafe {
                // SAFETY:
                // - `range` is nonzero because it is a `State::NonZero`
                // - Shifting `range` left by `Word::BITS` bits doesn't truncate
                //   because we checked that `range < 1 << (State::BITS - Word::Bits)`.
                (self.state.range.get() << Word::BITS).into_nonzero_unchecked()
            };

            // Then update `point`, which restores invariant (*):
            self.point = self.point << Word::BITS;
            if let Some(word) = self.bulk.read()? {
                self.point = self.point | word.into();
            }

            // TODO: register reads past end?
        }

        Ok(symbol)
    }

    fn maybe_exhausted(&self) -> bool {
        RangeDecoder::maybe_exhausted(self)
    }
}

/// Provides temporary read-only access to the compressed data wrapped in an
/// [`RangeEncoder`].
///
/// Dereferences to `&[Word]`. See [`RangeEncoder::get_compressed`] for an example.
pub struct EncoderGuard<'a, Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    inner: &'a mut RangeEncoder<Word, State>,
}

impl<Word, State> Debug for EncoderGuard<'_, Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        Debug::fmt(&**self, f)
    }
}

impl<'a, Word, State> EncoderGuard<'a, Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    fn new(encoder: &'a mut RangeEncoder<Word, State>) -> Self {
        // Append state. Will be undone in `<Self as Drop>::drop`.
        if !encoder.is_empty() {
            encoder.seal().unwrap_infallible();
        }
        Self { inner: encoder }
    }
}

impl<'a, Word, State> Drop for EncoderGuard<'a, Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    fn drop(&mut self) {
        self.inner.unseal();
    }
}

impl<'a, Word, State> Deref for EncoderGuard<'a, Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    type Target = [Word];

    fn deref(&self) -> &Self::Target {
        &self.inner.bulk
    }
}

impl<'a, Word, State> AsRef<[Word]> for EncoderGuard<'a, Word, State>
where
    Word: BitArray + Into<State>,
    State: BitArray + AsPrimitive<Word>,
{
    fn as_ref(&self) -> &[Word] {
        self
    }
}

#[cfg(test)]
mod tests {
    extern crate std;
    use std::dbg;

    use super::super::model::{
        ContiguousCategoricalEntropyModel, IterableEntropyModel, LeakyQuantizer,
    };
    use super::*;

    use probability::distribution::{Gaussian, Inverse};
    use rand_xoshiro::{
        rand_core::{RngCore, SeedableRng},
        Xoshiro256StarStar,
    };

    #[test]
    fn compress_none() {
        let encoder = DefaultRangeEncoder::new();
        assert!(encoder.is_empty());
        let compressed = encoder.into_compressed().unwrap();
        assert!(compressed.is_empty());

        let decoder = DefaultRangeDecoder::from_compressed(compressed).unwrap();
        assert!(decoder.maybe_exhausted());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_one() {
        generic_compress_few(core::iter::once(5), 1)
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_two() {
        generic_compress_few([2, 8].iter().cloned(), 1)
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_ten() {
        generic_compress_few(0..10, 2)
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_twenty() {
        generic_compress_few(-10..10, 4)
    }

    fn generic_compress_few<I>(symbols: I, expected_size: usize)
    where
        I: IntoIterator<Item = i32>,
        I::IntoIter: Clone,
    {
        let symbols = symbols.into_iter();

        let mut encoder = DefaultRangeEncoder::new();
        let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(-127..=127);
        let model = quantizer.quantize(Gaussian::new(3.2, 5.1));

        encoder.encode_iid_symbols(symbols.clone(), &model).unwrap();
        let compressed = encoder.into_compressed().unwrap();
        assert_eq!(compressed.len(), expected_size);

        let mut decoder = DefaultRangeDecoder::from_compressed(&compressed).unwrap();
        for symbol in symbols {
            assert_eq!(decoder.decode_symbol(&model).unwrap(), symbol);
        }
        assert!(decoder.maybe_exhausted());
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u32_u64_32() {
        generic_compress_many::<u32, u64, u32, 32>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u32_u64_24() {
        generic_compress_many::<u32, u64, u32, 24>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u32_u64_16() {
        generic_compress_many::<u32, u64, u16, 16>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u32_u64_8() {
        generic_compress_many::<u32, u64, u8, 8>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u16_u64_16() {
        generic_compress_many::<u16, u64, u16, 16>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u16_u64_12() {
        generic_compress_many::<u16, u64, u16, 12>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u16_u64_8() {
        generic_compress_many::<u16, u64, u8, 8>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u8_u64_8() {
        generic_compress_many::<u8, u64, u8, 8>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u16_u32_16() {
        generic_compress_many::<u16, u32, u16, 16>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u16_u32_12() {
        generic_compress_many::<u16, u32, u16, 12>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u16_u32_8() {
        generic_compress_many::<u16, u32, u8, 8>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u8_u32_8() {
        generic_compress_many::<u8, u32, u8, 8>();
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn compress_many_u8_u16_8() {
        generic_compress_many::<u8, u16, u8, 8>();
    }

    fn generic_compress_many<Word, State, Probability, const PRECISION: usize>()
    where
        State: BitArray + AsPrimitive<Word>,
        Word: BitArray + Into<State> + AsPrimitive<Probability>,
        Probability: BitArray + Into<Word> + AsPrimitive<usize> + Into<f64>,
        u32: AsPrimitive<Probability>,
        usize: AsPrimitive<Probability>,
        f64: AsPrimitive<Probability>,
        i32: AsPrimitive<Probability>,
    {
        const AMT: usize = 1000;
        let mut symbols_gaussian = Vec::with_capacity(AMT);
        let mut means = Vec::with_capacity(AMT);
        let mut stds = Vec::with_capacity(AMT);

        let mut rng = Xoshiro256StarStar::seed_from_u64(1234);
        for _ in 0..AMT {
            let mean = (200.0 / u32::MAX as f64) * rng.next_u32() as f64 - 100.0;
            let std_dev = (10.0 / u32::MAX as f64) * rng.next_u32() as f64 + 0.001;
            let quantile = (rng.next_u32() as f64 + 0.5) / (1u64 << 32) as f64;
            let dist = Gaussian::new(mean, std_dev);
            let symbol = core::cmp::max(
                -127,
                core::cmp::min(127, dist.inverse(quantile).round() as i32),
            );

            symbols_gaussian.push(symbol);
            means.push(mean);
            stds.push(std_dev);
        }

        let hist = [
            1u32, 186545, 237403, 295700, 361445, 433686, 509456, 586943, 663946, 737772, 1657269,
            896675, 922197, 930672, 916665, 0, 0, 0, 0, 0, 723031, 650522, 572300, 494702, 418703,
            347600, 1, 283500, 226158, 178194, 136301, 103158, 76823, 55540, 39258, 27988, 54269,
        ];
        let categorical_probabilities = hist.iter().map(|&x| x as f64).collect::<Vec<_>>();
        let categorical =
            ContiguousCategoricalEntropyModel::<Probability, _, PRECISION>::from_floating_point_probabilities(
                &categorical_probabilities,
            )
            .unwrap();
        let mut symbols_categorical = Vec::with_capacity(AMT);
        let max_probability = Probability::max_value() >> (Probability::BITS - PRECISION);
        for _ in 0..AMT {
            let quantile = rng.next_u32().as_() & max_probability;
            let symbol = categorical.quantile_function(quantile).0;
            symbols_categorical.push(symbol);
        }

        let mut encoder = RangeEncoder::<Word, State>::new();

        encoder
            .encode_iid_symbols(&symbols_categorical, &categorical)
            .unwrap();
        dbg!(
            encoder.num_bits(),
            AMT as f64 * categorical.entropy_base2::<f64>()
        );

        let quantizer = LeakyQuantizer::<_, _, Probability, PRECISION>::new(-127..=127);
        encoder
            .encode_symbols(symbols_gaussian.iter().zip(&means).zip(&stds).map(
                |((&symbol, &mean), &core)| (symbol, quantizer.quantize(Gaussian::new(mean, core))),
            ))
            .unwrap();
        dbg!(encoder.num_bits());

        let mut decoder = encoder.into_decoder().unwrap();

        let reconstructed_categorical = decoder
            .decode_iid_symbols(AMT, &categorical)
            .collect::<Result<Vec<_>, _>>()
            .unwrap();
        let reconstructed_gaussian = decoder
            .decode_symbols(
                means
                    .iter()
                    .zip(&stds)
                    .map(|(&mean, &core)| quantizer.quantize(Gaussian::new(mean, core))),
            )
            .collect::<Result<Vec<_>, _>>()
            .unwrap();

        assert!(decoder.maybe_exhausted());

        assert_eq!(symbols_categorical, reconstructed_categorical);
        assert_eq!(symbols_gaussian, reconstructed_gaussian);
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn seek() {
        const NUM_CHUNKS: usize = 100;
        const SYMBOLS_PER_CHUNK: usize = 100;

        let quantizer = LeakyQuantizer::<_, _, u32, 24>::new(-100..=100);
        let model = quantizer.quantize(Gaussian::new(0.0, 10.0));

        let mut encoder = DefaultRangeEncoder::new();

        let mut rng = Xoshiro256StarStar::seed_from_u64(123);
        let mut symbols = Vec::with_capacity(NUM_CHUNKS);
        let mut jump_table = Vec::with_capacity(NUM_CHUNKS);

        for _ in 0..NUM_CHUNKS {
            jump_table.push(encoder.pos());
            let chunk = (0..SYMBOLS_PER_CHUNK)
                .map(|_| model.quantile_function(rng.next_u32() % (1 << 24)).0)
                .collect::<Vec<_>>();
            encoder.encode_iid_symbols(&chunk, &model).unwrap();
            symbols.push(chunk);
        }
        let final_pos_and_state = encoder.pos();

        let mut decoder = encoder.decoder();

        // Verify we can decode the chunks normally (we can't veryify that coding and
        // decoding lead to same `pos_and_state` because the range decoder currently doesn't
        // implement `Pos` due to complications at the stream end.)
        for (chunk, _) in symbols.iter().zip(&jump_table) {
            let decoded = decoder
                .decode_iid_symbols(SYMBOLS_PER_CHUNK, &model)
                .collect::<Result<Vec<_>, _>>()
                .unwrap();
            assert_eq!(&decoded, chunk);
        }
        assert!(decoder.maybe_exhausted());

        // Seek to some random offsets in the jump table and decode one chunk
        for i in 0..100 {
            let chunk_index = if i == 3 {
                // Make sure we test jumping to beginning at least once.
                0
            } else {
                rng.next_u32() as usize % NUM_CHUNKS
            };

            let pos_and_state = jump_table[chunk_index];
            decoder.seek(pos_and_state).unwrap();
            let decoded = decoder
                .decode_iid_symbols(SYMBOLS_PER_CHUNK, &model)
                .collect::<Result<Vec<_>, _>>()
                .unwrap();
            assert_eq!(&decoded, &symbols[chunk_index])
        }

        // Test jumping to end (but first make sure we're not already at the end).
        decoder.seek(jump_table[0]).unwrap();
        assert!(!decoder.maybe_exhausted());
        decoder.seek(final_pos_and_state).unwrap();
        assert!(decoder.maybe_exhausted());
    }
}

#[derive(Debug)]
#[non_exhaustive]
pub enum DecoderFrontendError {
    /// This can only happen if both of the following conditions apply:
    ///
    /// 1. we are decoding invalid compressed data; and
    /// 2. we use entropy models with varying `PRECISION`s.
    ///
    /// Unless you change the `PRECISION` mid-decoding this error cannot occur. However,
    /// note that the encoder is not surjective, i.e., it cannot reach all possible values.
    /// The reason why the decoder still doesn't err (unless varying `PRECISION`s are used)
    /// is that it is not injective, i.e., it maps the bit strings that are unreachable by
    /// the encoder to symbols that could have been encoded into a different bit string.
    ///
    /// The lack of injectivity of the encoder makes the Range Coder implementation in this
    /// library unsuitable for bitsback coding. Even though you can encode an arbitrary bit
    /// string into a sequence of symbols using any entropy model, decoding the sequence of
    /// symbols with the same entropy models won't always give you the same bit string. In
    /// other words,
    ///
    /// - `range_decode(range_encode(sequence_of_symbols)) = sequence_of_symbols` for all
    ///   `sequence_of_symbols`; but
    /// - `range_encode(range_encode(bit_string)) != bit_string` in general.
    ///
    /// If you need equality in the second relation, use an [`AnsCoder`].
    ///
    /// [`AnsCoder`]: super::stack::AnsCoder
    InvalidData,
}

impl Display for DecoderFrontendError {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            Self::InvalidData => write!(f, "Tried to decode invalid compressed data."),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for DecoderFrontendError {}