1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
//! This implements the integer trait which denotes a 32 bit unsigned integer


use super::binary::*;
use super::hex::*;
use std::marker::PhantomData;

mod impls;
use impls::*;

/// A struct which generics represents an unique integer from 0 to 2 ** 32 - 1
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// // a has type TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>
/// ```
#[derive(Clone, Copy)]
pub struct TypedInteger<H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex> {
    _m0: PhantomData<H0>,
    _m1: PhantomData<H1>,
    _m2: PhantomData<H2>,
    _m3: PhantomData<H3>,
    _m4: PhantomData<H4>,
    _m5: PhantomData<H5>,
    _m6: PhantomData<H6>,
    _m7: PhantomData<H7>
}

impl<H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex> TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> {
    pub const fn new() -> Self {
        TypedInteger { 
            _m0: PhantomData, 
            _m1: PhantomData, 
            _m2: PhantomData, 
            _m3: PhantomData,
            _m4: PhantomData, 
            _m5: PhantomData, 
            _m6: PhantomData, 
            _m7: PhantomData 
        }
    }

    /// Returns the value of the Typed integer
    /// 
    /// Example
    /// ```
    /// use const_arithmetic::*;
    /// let a = parse_integer!(3);
    /// assert_eq!(a.number(), 3);
    /// ```
    pub const fn number() -> u32 {
        H0::NUMBER + 16 * H1::NUMBER + 256 * H2::NUMBER + 4096 * H3::NUMBER + 65536 * H4::NUMBER + 1048576 * H5::NUMBER + 16777216 * H6::NUMBER + 268435456 * H7::NUMBER
    }
}

/// A trait that denotes whether something is an integer
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a is 3
/// fn is_3<T>(_a: T) where
/// T: IsInteger,
/// T: TypedAssertEqual<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>>
/// {}
/// 
/// is_3(a);
/// ```
pub trait IsInteger: Copy {
    type Hex0: Hex; type Hex1: Hex; type Hex2: Hex; type Hex3: Hex; type Hex4: Hex; type Hex5: Hex; type Hex6: Hex; type Hex7: Hex;
    fn number() -> u32;
}

impl<H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex> IsInteger for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> {
    type Hex0 = H0; type Hex1 = H1; type Hex2 = H2; type Hex3 = H3; type Hex4 = H4; type Hex5 = H5; type Hex6 = H6; type Hex7 = H7;
    fn number() -> u32 {
        H0::NUMBER + 16 * H1::NUMBER + 256 * H2::NUMBER + 4096 * H3::NUMBER + 65536 * H4::NUMBER + 1048576 * H5::NUMBER + 16777216 * H6::NUMBER + 268435456 * H7::NUMBER
    }
}

/// A trait that asserts two integers are equal
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a is 3
/// fn is_3<T>(_a: T) where
/// T: IsInteger,
/// T: TypedAssertEqual<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>>
/// {}
/// 
/// is_3(a);
/// ```
pub trait TypedAssertEqual<N: IsInteger> {}
impl<N: IsInteger> TypedAssertEqual<N> for TypedInteger<N::Hex0, N::Hex1, N::Hex2, N::Hex3, N::Hex4, N::Hex5, N::Hex6, N::Hex7> {}

/// A trait that returns a binary depending on whether two integers are equal
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a <= 5 but not a < 3
/// fn example<T, R, S>(_a: T) where
/// T: IsInteger,
/// R: Binary,
/// S: Binary,
/// T: TypedEqual<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>, Output = R>,
/// R: AssertTrue,
/// T: TypedEqual<TypedInteger<_5, _0, _0, _0, _0, _0, _0, _0>, Output = S>,
/// S: AssertFalse
/// {}
/// 
/// example(a);
/// ```
pub trait TypedEqual<N: IsInteger> { type Output: Binary; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: Binary> TypedEqual<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
N: _Equal<TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>, Output = R> {
    type Output = R;
}

/// A trait that returns a binary depending on whether a < b
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a <= 5 but not a < 3
/// fn example<T, R, S>(_a: T) where
/// T: IsInteger,
/// R: Binary,
/// S: Binary,
/// T: TypedLessThan<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>, Output = R>,
/// R: AssertFalse,
/// T: TypedLessThan<TypedInteger<_5, _0, _0, _0, _0, _0, _0, _0>, Output = S>,
/// S: AssertTrue
/// {}
/// 
/// example(a);
/// ```
pub trait TypedLessThan<N: IsInteger> { type Output: Binary; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: Binary> TypedLessThan<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _LessThan<N, Output = R> {
    type Output = R;
}

/// A trait that returns a binary depending on whether two integers are less or equal
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a <= 5 but not a < 3
/// fn example<T, R, S>(_a: T) where
/// T: IsInteger,
/// R: Binary,
/// S: Binary,
/// T: TypedLeq<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>, Output = R>,
/// R: AssertTrue,
/// T: TypedLeq<TypedInteger<_5, _0, _0, _0, _0, _0, _0, _0>, Output = S>,
/// S: AssertTrue
/// {}
/// 
/// example(a);
/// ```
pub trait TypedLeq<N: IsInteger> { type Output: Binary; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: Binary> TypedLeq<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _Leq<N, Output = R> {
    type Output = R;
}

/// A trait that returns a binary depending on whether two integers are greater or equal
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a <= 5 but not a < 3
/// fn example<T, R, S>(_a: T) where
/// T: IsInteger,
/// R: Binary,
/// S: Binary,
/// T: TypedGeq<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>, Output = R>,
/// R: AssertTrue,
/// T: TypedGeq<TypedInteger<_5, _0, _0, _0, _0, _0, _0, _0>, Output = S>,
/// S: AssertFalse
/// {}
/// 
/// example(a);
/// ```
pub trait TypedGeq<N: IsInteger> { type Output: Binary; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: Binary> TypedGeq<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _Geq<N, Output = R> {
    type Output = R;
}

/// A trait that returns a binary depending on whether a > b
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// 
/// // This verifies that a <= 5 but not a < 3
/// fn example<T, R, S>(_a: T) where
/// T: IsInteger,
/// R: Binary,
/// S: Binary,
/// T: TypedGreaterThan<TypedInteger<_3, _0, _0, _0, _0, _0, _0, _0>, Output = R>,
/// R: AssertFalse,
/// T: TypedGreaterThan<TypedInteger<_1, _0, _0, _0, _0, _0, _0, _0>, Output = S>,
/// S: AssertTrue
/// {}
/// 
/// example(a);
/// ```
pub trait TypedGreaterThan<N: IsInteger> { type Output: Binary; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: Binary> TypedGreaterThan<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _GreaterThan<N, Output = R> {
    type Output = R;
}

/// Denotes integer addition. If this says C7 does not implement HexAssertEq, this means it overflowed.
/// 
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(3);
/// let b = parse_integer!(5);
/// let c = parse_integer!(8);
/// 
/// // This verifies that 3 + 5 = 8
/// fn example<P, Q, R>(_p: P, _q: Q, _r: R) where
/// P: IsInteger,
/// Q: IsInteger,
/// R: IsInteger,
/// P: TypedAdd<Q, Output = R>
/// {}
/// 
/// example(a, b, c);
/// 
/// // This is another way of implementing the above
/// fn example2<P, Q, R, S, T>(_p: P, _q: Q, _r: R) where
/// P: IsInteger,
/// Q: IsInteger,
/// R: IsInteger,
/// S: IsInteger,
/// T: Binary,
/// P: TypedAdd<Q, Output = S>,
/// R: TypedEqual<S, Output = T>,
/// T: AssertTrue {}
/// example2(a, b, c);
/// ```
pub trait TypedAdd<N: IsInteger> { type Output: IsInteger; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: IsInteger> TypedAdd<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _Add<N, Output = R> {
    type Output = R;
}

/// Denotes integer subtraction. If this says C7 does not implement HexAssertEq, this means it underflowed.
///
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(7);
/// let b = parse_integer!(4);
/// let c = parse_integer!(3);
/// 
/// // This verifies that 7 - 4 = 3
/// fn example<P, Q, R>(_p: P, _q: Q, _r: R) where
/// P: IsInteger,
/// Q: IsInteger,
/// R: IsInteger,
/// P: TypedSub<Q, Output = R>
/// {}
/// 
/// example(a, b, c);
/// ```
pub trait TypedSub<N: IsInteger> { type Output: IsInteger; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: IsInteger> TypedSub<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _Sub<N, Output = R> {
    type Output = R;
}



/// A multiplication of 32 bit number and 32 bit number can be stored safely in a 64 bit number. We represent them as lower 32 bits and upper 32 bits
///
/// Example
/// ```
/// use const_arithmetic::*;
/// let a = parse_integer!(6);
/// let b = parse_integer!(4);
/// let c = parse_integer!(24);
/// 
/// // This verifies that 6 * 4 = 24
/// fn example<P, Q, R>(_p: P, _q: Q, _r: R) where
/// P: IsInteger,
/// Q: IsInteger,
/// R: IsInteger,
/// P: TypedMul<Q, Output = R>
/// {}
/// 
/// example(a, b, c);
/// 
/// // If we are handling really big integers we can get the overflowed bits as follows
/// // 1234567890 * 987654321 = 1219326311126352690 = 283896529 * (2**32) + 3623437106
/// let a = parse_integer!(1234567890);
/// let b = parse_integer!(987654321);
/// let overflow = parse_integer!(283896529);
/// let result = parse_integer!(3623437106);
/// 
/// // This verifies that 7 - 4 = 3
/// fn example2<P, Q, R, S>(_p: P, _q: Q, _r: R, _s: S) where
/// P: IsInteger,
/// Q: IsInteger,
/// R: IsInteger,
/// S: IsInteger,
/// P: TypedMul<Q, Output = R, Overflow = S>
/// {}
/// 
/// example2(a, b, result, overflow);
/// ```
pub trait TypedMul<N: IsInteger> { type Output: IsInteger; type Overflow: IsInteger; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: IsInteger, O: IsInteger> TypedMul<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _Mul<N, Output = R, Overflow = O> {
    type Output = R;
    type Overflow = O;
}


// TODO: We can actually implement bitshift to optimize division

/// Returns the Quotient of H/K for H: Div<K, Output: ...>
/// 
/// Note about implementation detail: This is an expanded version of long division - it takes O(1) steps but the constant is quite big unfortunately
/// (to be precise its 32 multiplications plus a negligible amount of addition and subtraction and other stuff)
/// If there were many divisions, the compile time increases quite a bit
/// 
/// Example
/// ```
/// // (This doc test takes about 5 seconds to complete on my computer)
/// use const_arithmetic::*;
/// let a = parse_integer!(25);
/// let b = parse_integer!(4);
/// let quotient = parse_integer!(6);
/// let modulus = parse_integer!(1);
/// 
/// // This verifies that 25/4 = 6 ... 1
/// fn example<P, Q, R, S>(_p: P, _q: Q, _r: R, _s: S) where
/// P: IsInteger,
/// Q: IsInteger,
/// R: IsInteger,
/// S: IsInteger,
/// P: TypedDiv<Q, Output = R, Remainder = S>
/// {}
/// 
/// example(a, b, quotient, modulus);
pub trait TypedDiv<K: IsInteger> { type Output: IsInteger; type Remainder: IsInteger; }
impl <N: IsInteger, H0: Hex, H1: Hex, H2: Hex, H3: Hex, H4: Hex, H5: Hex, H6: Hex, H7: Hex, R: IsInteger, O: IsInteger> TypedDiv<N> for TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7> where
TypedInteger<H0, H1, H2, H3, H4, H5, H6, H7>: _Div<N, Output = R, Remainder = O> {
    type Output = R;
    type Remainder = O;
}