conspire/math/integrate/verner_8/
mod.rs

1#[cfg(test)]
2mod test;
3
4use super::{
5    super::{
6        Tensor, TensorArray, TensorRank0, TensorVec, Vector, interpolate::InterpolateSolution,
7    },
8    Explicit, IntegrationError,
9};
10use crate::{ABS_TOL, REL_TOL};
11use std::ops::{Mul, Sub};
12
13const C_2: TensorRank0 = 0.05;
14const C_3: TensorRank0 = 0.1065625;
15const C_4: TensorRank0 = 0.15984375;
16const C_5: TensorRank0 = 0.39;
17const C_6: TensorRank0 = 0.465;
18const C_7: TensorRank0 = 0.155;
19const C_8: TensorRank0 = 0.943;
20const C_9: TensorRank0 = 0.901802041735857;
21const C_10: TensorRank0 = 0.909;
22const C_11: TensorRank0 = 0.94;
23
24const A_2_1: TensorRank0 = 0.05;
25const A_3_1: TensorRank0 = -0.0069931640625;
26const A_3_2: TensorRank0 = 0.1135556640625;
27const A_4_1: TensorRank0 = 0.0399609375;
28const A_4_3: TensorRank0 = 0.1198828125;
29const A_5_1: TensorRank0 = 0.36139756280045754;
30const A_5_3: TensorRank0 = -1.3415240667004928;
31const A_5_4: TensorRank0 = 1.3701265039000352;
32const A_6_1: TensorRank0 = 0.049047202797202795;
33const A_6_4: TensorRank0 = 0.23509720422144048;
34const A_6_5: TensorRank0 = 0.18085559298135673;
35const A_7_1: TensorRank0 = 0.06169289044289044;
36const A_7_4: TensorRank0 = 0.11236568314640277;
37const A_7_5: TensorRank0 = -0.03885046071451367;
38const A_7_6: TensorRank0 = 0.01979188712522046;
39const A_8_1: TensorRank0 = -1.767630240222327;
40const A_8_4: TensorRank0 = -62.5;
41const A_8_5: TensorRank0 = -6.061889377376669;
42const A_8_6: TensorRank0 = 5.6508231982227635;
43const A_8_7: TensorRank0 = 65.62169641937624;
44const A_9_1: TensorRank0 = -1.1809450665549708;
45const A_9_4: TensorRank0 = -41.50473441114321;
46const A_9_5: TensorRank0 = -4.434438319103725;
47const A_9_6: TensorRank0 = 4.260408188586133;
48const A_9_7: TensorRank0 = 43.75364022446172;
49const A_9_8: TensorRank0 = 0.00787142548991231;
50const A_10_1: TensorRank0 = -1.2814059994414884;
51const A_10_4: TensorRank0 = -45.047139960139866;
52const A_10_5: TensorRank0 = -4.731362069449576;
53const A_10_6: TensorRank0 = 4.514967016593808;
54const A_10_7: TensorRank0 = 47.44909557172985;
55const A_10_8: TensorRank0 = 0.01059228297111661;
56const A_10_9: TensorRank0 = -0.0057468422638446166;
57const A_11_1: TensorRank0 = -1.7244701342624853;
58const A_11_4: TensorRank0 = -60.92349008483054;
59const A_11_5: TensorRank0 = -5.951518376222392;
60const A_11_6: TensorRank0 = 5.556523730698456;
61const A_11_7: TensorRank0 = 63.98301198033305;
62const A_11_8: TensorRank0 = 0.014642028250414961;
63const A_11_9: TensorRank0 = 0.06460408772358203;
64const A_11_10: TensorRank0 = -0.0793032316900888;
65const A_12_1: TensorRank0 = -3.301622667747079;
66const A_12_4: TensorRank0 = -118.01127235975251;
67const A_12_5: TensorRank0 = -10.141422388456112;
68const A_12_6: TensorRank0 = 9.139311332232058;
69const A_12_7: TensorRank0 = 123.37594282840426;
70const A_12_8: TensorRank0 = 4.62324437887458;
71const A_12_9: TensorRank0 = -3.3832777380682018;
72const A_12_10: TensorRank0 = 4.527592100324618;
73const A_12_11: TensorRank0 = -5.828495485811623;
74const A_13_1: TensorRank0 = -3.039515033766309;
75const A_13_4: TensorRank0 = -109.26086808941763;
76const A_13_5: TensorRank0 = -9.290642497400293;
77const A_13_6: TensorRank0 = 8.43050498176491;
78const A_13_7: TensorRank0 = 114.20100103783314;
79const A_13_8: TensorRank0 = -0.9637271342145479;
80const A_13_9: TensorRank0 = -5.0348840888021895;
81const A_13_10: TensorRank0 = 5.958130824002923;
82
83const B_1: TensorRank0 = 0.04427989419007951;
84const B_6: TensorRank0 = 0.3541049391724449;
85const B_7: TensorRank0 = 0.24796921549564377;
86const B_8: TensorRank0 = -15.694202038838085;
87const B_9: TensorRank0 = 25.084064965558564;
88const B_10: TensorRank0 = -31.738367786260277;
89const B_11: TensorRank0 = 22.938283273988784;
90const B_12: TensorRank0 = -0.2361324633071542;
91
92const D_1: TensorRank0 = -0.00003272103901028138;
93const D_6: TensorRank0 = -0.0005046250618777704;
94const D_7: TensorRank0 = 0.0001211723589784759;
95const D_8: TensorRank0 = -20.142336771313868;
96const D_9: TensorRank0 = 5.2371785994398286;
97const D_10: TensorRank0 = -8.156744408794658;
98const D_11: TensorRank0 = 22.938283273988784;
99const D_12: TensorRank0 = -0.2361324633071542;
100const D_13: TensorRank0 = 0.36016794372897754;
101
102/// Explicit, thirteen-stage, eighth-order, variable-step, Runge-Kutta method.[^cite]
103///
104/// [^cite]: J.H. Verner, [Numer. Algor. **53**, 383 (2010)](https://doi.org/10.1007/s11075-009-9290-3).
105///
106/// ```math
107/// \frac{dy}{dt} = f(t, y)
108/// ```
109/// ```math
110/// t_{n+1} = t_n + h
111/// ```
112/// ```math
113/// k_1 = f(t_n, y_n)
114/// ```
115/// ```math
116/// \cdots
117/// ```
118/// ```math
119/// h_{n+1} = \beta h \left(\frac{e_\mathrm{tol}}{e_{n+1}}\right)^{1/p}
120/// ```
121#[derive(Debug)]
122pub struct Verner8 {
123    /// Absolute error tolerance.
124    pub abs_tol: TensorRank0,
125    /// Relative error tolerance.
126    pub rel_tol: TensorRank0,
127    /// Multiplier for adaptive time steps.
128    pub dt_beta: TensorRank0,
129    /// Exponent for adaptive time steps.
130    pub dt_expn: TensorRank0,
131    /// Initial relative time step.
132    pub dt_init: TensorRank0,
133}
134
135impl Default for Verner8 {
136    fn default() -> Self {
137        Self {
138            abs_tol: ABS_TOL,
139            rel_tol: REL_TOL,
140            dt_beta: 0.9,
141            dt_expn: 8.0,
142            dt_init: 0.1,
143        }
144    }
145}
146
147impl<Y, U> Explicit<Y, U> for Verner8
148where
149    Self: InterpolateSolution<Y, U>,
150    Y: Tensor + TensorArray,
151    for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
152    U: TensorVec<Item = Y>,
153{
154    fn integrate(
155        &self,
156        function: impl Fn(&TensorRank0, &Y) -> Y,
157        time: &[TensorRank0],
158        initial_condition: Y,
159    ) -> Result<(Vector, U), IntegrationError> {
160        if time.len() < 2 {
161            return Err(IntegrationError::LengthTimeLessThanTwo);
162        } else if time[0] >= time[time.len() - 1] {
163            return Err(IntegrationError::InitialTimeNotLessThanFinalTime);
164        }
165        let mut t = time[0];
166        let mut dt = self.dt_init * time[time.len() - 1];
167        let mut e;
168        let mut k_1;
169        let mut k_2;
170        let mut k_3;
171        let mut k_4;
172        let mut k_5;
173        let mut k_6;
174        let mut k_7;
175        let mut k_8;
176        let mut k_9;
177        let mut k_10;
178        let mut k_11;
179        let mut k_12;
180        let mut k_13;
181        let mut t_sol = Vector::zero(0);
182        t_sol.push(time[0]);
183        let mut y = initial_condition.clone();
184        let mut y_sol = U::zero(0);
185        y_sol.push(initial_condition.clone());
186        let mut y_trial;
187        while t < time[time.len() - 1] {
188            k_1 = function(&t, &y);
189            k_2 = function(&(t + C_2 * dt), &(&k_1 * (A_2_1 * dt) + &y));
190            k_3 = function(
191                &(t + C_3 * dt),
192                &(&k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y),
193            );
194            k_4 = function(
195                &(t + C_4 * dt),
196                &(&k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y),
197            );
198            k_5 = function(
199                &(t + C_5 * dt),
200                &(&k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y),
201            );
202            k_6 = function(
203                &(t + C_6 * dt),
204                &(&k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y),
205            );
206            k_7 = function(
207                &(t + C_7 * dt),
208                &(&k_1 * (A_7_1 * dt)
209                    + &k_4 * (A_7_4 * dt)
210                    + &k_5 * (A_7_5 * dt)
211                    + &k_6 * (A_7_6 * dt)
212                    + &y),
213            );
214            k_8 = function(
215                &(t + C_8 * dt),
216                &(&k_1 * (A_8_1 * dt)
217                    + &k_4 * (A_8_4 * dt)
218                    + &k_5 * (A_8_5 * dt)
219                    + &k_6 * (A_8_6 * dt)
220                    + &k_7 * (A_8_7 * dt)
221                    + &y),
222            );
223            k_9 = function(
224                &(t + C_9 * dt),
225                &(&k_1 * (A_9_1 * dt)
226                    + &k_4 * (A_9_4 * dt)
227                    + &k_5 * (A_9_5 * dt)
228                    + &k_6 * (A_9_6 * dt)
229                    + &k_7 * (A_9_7 * dt)
230                    + &k_8 * (A_9_8 * dt)
231                    + &y),
232            );
233            k_10 = function(
234                &(t + C_10 * dt),
235                &(&k_1 * (A_10_1 * dt)
236                    + &k_4 * (A_10_4 * dt)
237                    + &k_5 * (A_10_5 * dt)
238                    + &k_6 * (A_10_6 * dt)
239                    + &k_7 * (A_10_7 * dt)
240                    + &k_8 * (A_10_8 * dt)
241                    + &k_9 * (A_10_9 * dt)
242                    + &y),
243            );
244            k_11 = function(
245                &(t + C_11 * dt),
246                &(&k_1 * (A_11_1 * dt)
247                    + &k_4 * (A_11_4 * dt)
248                    + &k_5 * (A_11_5 * dt)
249                    + &k_6 * (A_11_6 * dt)
250                    + &k_7 * (A_11_7 * dt)
251                    + &k_8 * (A_11_8 * dt)
252                    + &k_9 * (A_11_9 * dt)
253                    + &k_10 * (A_11_10 * dt)
254                    + &y),
255            );
256            k_12 = function(
257                &(t + dt),
258                &(&k_1 * (A_12_1 * dt)
259                    + &k_4 * (A_12_4 * dt)
260                    + &k_5 * (A_12_5 * dt)
261                    + &k_6 * (A_12_6 * dt)
262                    + &k_7 * (A_12_7 * dt)
263                    + &k_8 * (A_12_8 * dt)
264                    + &k_9 * (A_12_9 * dt)
265                    + &k_10 * (A_12_10 * dt)
266                    + &k_11 * (A_12_11 * dt)
267                    + &y),
268            );
269            y_trial = (&k_1 * B_1
270                + &k_6 * B_6
271                + &k_7 * B_7
272                + &k_8 * B_8
273                + &k_9 * B_9
274                + &k_10 * B_10
275                + &k_11 * B_11
276                + &k_12 * B_12)
277                * dt
278                + &y;
279            k_13 = function(
280                &(t + dt),
281                &(&k_1 * (A_13_1 * dt)
282                    + &k_4 * (A_13_4 * dt)
283                    + &k_5 * (A_13_5 * dt)
284                    + &k_6 * (A_13_6 * dt)
285                    + &k_7 * (A_13_7 * dt)
286                    + &k_8 * (A_13_8 * dt)
287                    + &k_9 * (A_13_9 * dt)
288                    + &k_10 * (A_13_10 * dt)
289                    + &y),
290            );
291            e = ((&k_1 * D_1
292                + &k_6 * D_6
293                + &k_7 * D_7
294                + &k_8 * D_8
295                + &k_9 * D_9
296                + &k_10 * D_10
297                + &k_11 * D_11
298                + &k_12 * D_12
299                + &k_13 * D_13)
300                * dt)
301                .norm();
302            if e < self.abs_tol || e / y_trial.norm() < self.rel_tol {
303                t += dt;
304                y = y_trial;
305                t_sol.push(t);
306                y_sol.push(y.clone());
307            }
308            dt *= self.dt_beta * (self.abs_tol / e).powf(1.0 / self.dt_expn);
309        }
310        if time.len() > 2 {
311            let t_int = Vector::new(time);
312            let y_int = self.interpolate(&t_int, &t_sol, &y_sol, function);
313            Ok((t_int, y_int))
314        } else {
315            Ok((t_sol, y_sol))
316        }
317    }
318}
319
320impl<Y, U> InterpolateSolution<Y, U> for Verner8
321where
322    Y: Tensor + TensorArray,
323    for<'a> &'a Y: Mul<TensorRank0, Output = Y> + Sub<&'a Y, Output = Y>,
324    U: TensorVec<Item = Y>,
325{
326    fn interpolate(
327        &self,
328        time: &Vector,
329        tp: &Vector,
330        yp: &U,
331        function: impl Fn(&TensorRank0, &Y) -> Y,
332    ) -> U {
333        let mut dt = 0.0;
334        let mut i = 0;
335        let mut k_1 = Y::zero();
336        let mut k_2 = Y::zero();
337        let mut k_3 = Y::zero();
338        let mut k_4 = Y::zero();
339        let mut k_5 = Y::zero();
340        let mut k_6 = Y::zero();
341        let mut k_7 = Y::zero();
342        let mut k_8 = Y::zero();
343        let mut k_9 = Y::zero();
344        let mut k_10 = Y::zero();
345        let mut k_11 = Y::zero();
346        let mut k_12 = Y::zero();
347        let mut t = 0.0;
348        let mut y = Y::zero();
349        time.iter()
350            .map(|time_k| {
351                i = tp.iter().position(|tp_i| tp_i > time_k).unwrap();
352                t = tp[i - 1];
353                y = yp[i - 1].clone();
354                dt = time_k - t;
355                k_1 = function(&t, &y);
356                k_2 = function(&(t + C_2 * dt), &(&k_1 * (A_2_1 * dt) + &y));
357                k_3 = function(
358                    &(t + C_3 * dt),
359                    &(&k_1 * (A_3_1 * dt) + &k_2 * (A_3_2 * dt) + &y),
360                );
361                k_4 = function(
362                    &(t + C_4 * dt),
363                    &(&k_1 * (A_4_1 * dt) + &k_3 * (A_4_3 * dt) + &y),
364                );
365                k_5 = function(
366                    &(t + C_5 * dt),
367                    &(&k_1 * (A_5_1 * dt) + &k_3 * (A_5_3 * dt) + &k_4 * (A_5_4 * dt) + &y),
368                );
369                k_6 = function(
370                    &(t + C_6 * dt),
371                    &(&k_1 * (A_6_1 * dt) + &k_4 * (A_6_4 * dt) + &k_5 * (A_6_5 * dt) + &y),
372                );
373                k_7 = function(
374                    &(t + C_7 * dt),
375                    &(&k_1 * (A_7_1 * dt)
376                        + &k_4 * (A_7_4 * dt)
377                        + &k_5 * (A_7_5 * dt)
378                        + &k_6 * (A_7_6 * dt)
379                        + &y),
380                );
381                k_8 = function(
382                    &(t + C_8 * dt),
383                    &(&k_1 * (A_8_1 * dt)
384                        + &k_4 * (A_8_4 * dt)
385                        + &k_5 * (A_8_5 * dt)
386                        + &k_6 * (A_8_6 * dt)
387                        + &k_7 * (A_8_7 * dt)
388                        + &y),
389                );
390                k_9 = function(
391                    &(t + C_9 * dt),
392                    &(&k_1 * (A_9_1 * dt)
393                        + &k_4 * (A_9_4 * dt)
394                        + &k_5 * (A_9_5 * dt)
395                        + &k_6 * (A_9_6 * dt)
396                        + &k_7 * (A_9_7 * dt)
397                        + &k_8 * (A_9_8 * dt)
398                        + &y),
399                );
400                k_10 = function(
401                    &(t + C_10 * dt),
402                    &(&k_1 * (A_10_1 * dt)
403                        + &k_4 * (A_10_4 * dt)
404                        + &k_5 * (A_10_5 * dt)
405                        + &k_6 * (A_10_6 * dt)
406                        + &k_7 * (A_10_7 * dt)
407                        + &k_8 * (A_10_8 * dt)
408                        + &k_9 * (A_10_9 * dt)
409                        + &y),
410                );
411                k_11 = function(
412                    &(t + C_11 * dt),
413                    &(&k_1 * (A_11_1 * dt)
414                        + &k_4 * (A_11_4 * dt)
415                        + &k_5 * (A_11_5 * dt)
416                        + &k_6 * (A_11_6 * dt)
417                        + &k_7 * (A_11_7 * dt)
418                        + &k_8 * (A_11_8 * dt)
419                        + &k_9 * (A_11_9 * dt)
420                        + &k_10 * (A_11_10 * dt)
421                        + &y),
422                );
423                k_12 = function(
424                    &(t + dt),
425                    &(&k_1 * (A_12_1 * dt)
426                        + &k_4 * (A_12_4 * dt)
427                        + &k_5 * (A_12_5 * dt)
428                        + &k_6 * (A_12_6 * dt)
429                        + &k_7 * (A_12_7 * dt)
430                        + &k_8 * (A_12_8 * dt)
431                        + &k_9 * (A_12_9 * dt)
432                        + &k_10 * (A_12_10 * dt)
433                        + &k_11 * (A_12_11 * dt)
434                        + &y),
435                );
436                (&k_1 * B_1
437                    + &k_6 * B_6
438                    + &k_7 * B_7
439                    + &k_8 * B_8
440                    + &k_9 * B_9
441                    + &k_10 * B_10
442                    + &k_11 * B_11
443                    + &k_12 * B_12)
444                    * dt
445                    + &y
446            })
447            .collect()
448    }
449}