1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
use std::{cell::Cell, mem::take};
use compact_str::{CompactString, ToCompactString};
use serde::{ser::SerializeMap, Deserialize, Serialize};
#[cfg(not(feature = "indexmap"))]
type Map<T, V> = std::collections::BTreeMap<T, V>;
#[cfg(feature = "indexmap")]
type Map<T, V> = indexmap::IndexMap<T, V>;
/// Defines rules for serializing category names within the [`Archive`].
///
/// When an [`Archive`] is serialized, it manifests as a map of key-value pairs, where the key is a
/// string, and the value is a plain object. Due to the indistinguishable nature of category keys
/// from value object keys, a unique naming convention for categories is necessary.
///
/// The default naming convention prefixes category names with `~`. For instance, a category named
/// `hello` is serialized as `~hello`.
///
/// Users can customize this rule for both serialization and deserialization processes by invoking
/// the [`with_category_rule`] function.
pub enum CategoryRule<'a> {
/// Categories are signified by prefixing their names with the specified token.
Prefix(&'a str),
/// Categories are signified by appending their names with the specified token.
Suffix(&'a str),
/// Categories are signified by wrapping their names between the specified start and end tokens.
Wrap(&'a str, &'a str),
}
thread_local! {
static CATEGORY_RULE: Cell<CategoryRule<'static>> = Cell::new(Default::default());
}
/// Temporarily overrides the category serialization rule while serializing or deserializing a map.
///
/// This function allows for a custom `CategoryRule` to be specified for the duration of the
/// provided closure, `f`. This is especially useful when there's a need to diverge from the default
/// category naming convention during a specific serialization or deserialization task.
///
/// # Safety
///
/// The implementation uses thread-local storage (`CATEGORY_RULE`) to store the custom rule. The
/// original rule or default value is safely restored upon function exit, ensuring consistent
/// behavior across different invocations. Moreover, this function is panic-safe, meaning if a panic
/// occurs within the closure, the rule is still guaranteed to be restored before the panic
/// propagates.
///
/// # Arguments
///
/// * `rule`: The custom category rule to apply.
/// * `f`: A closure representing the serialization or deserialization task where the custom rule
/// should be used.
///
/// # Panics
///
/// This function will propagate any panics that occur within the provided closure.
pub fn with_category_rule(rule: CategoryRule, f: impl FnOnce() + std::panic::UnwindSafe) {
CATEGORY_RULE.with(|x| unsafe {
// SAFETY: Temporarily override lifetime as &'static; The `x` is guaranteed to be restored
// to its original value on function exit, even if a panic occurs.
x.replace(std::mem::transmute(rule));
let err = std::panic::catch_unwind(|| {
f();
});
x.replace(Default::default());
// Let panic propagate
err.unwrap();
})
}
impl<'a> Default for CategoryRule<'a> {
fn default() -> Self {
Self::Prefix("~")
}
}
impl<'a> CategoryRule<'a> {
pub fn is_category(&self, key: &str) -> bool {
match self {
Self::Prefix(prefix) => key.starts_with(prefix),
Self::Suffix(suffix) => key.ends_with(suffix),
Self::Wrap(prefix, suffix) => key.starts_with(prefix) && key.ends_with(suffix),
}
}
pub fn make_category(&self, key: &str, out_key: &mut CompactString) {
out_key.clear();
match self {
CategoryRule::Prefix(tok) => {
out_key.push_str(tok);
out_key.push_str(key);
}
CategoryRule::Suffix(tok) => {
out_key.push_str(key);
out_key.push_str(tok);
}
CategoryRule::Wrap(pre, suf) => {
out_key.push_str(pre);
out_key.push_str(key);
out_key.push_str(suf);
}
}
}
}
/// Represents a hierarchical archive of configuration values and categories.
///
/// The `Archive` struct organizes configuration data into a tree-like structure. Each node in this
/// structure can represent either a configuration category (identified by a path) or an individual
/// configuration value.
///
/// Categories within the archive are uniquely identified by keys that are prefixed with a special
/// character, typically `~`, though this can be customized using [`with_category_rule`]. Each
/// category can further contain nested categories and values, allowing for a deeply nested
/// hierarchical organization of configuration data.
///
/// Configuration values within a category are stored as key-value pairs, where the key is a string
/// representing the configuration name, and the value is its associated JSON representation.
///
/// This structure provides a compact and efficient way to represent, serialize, and deserialize
/// configuration data with support for custom category naming conventions.
#[derive(Default, Clone, Debug, PartialEq)]
pub struct Archive {
/// Every '~' prefixed keys
pub(crate) paths: Map<CompactString, Archive>,
/// All elements except child path nodes.
pub(crate) values: Map<CompactString, serde_json::Value>,
}
impl Archive {
pub fn iter_values(&self) -> impl Iterator<Item = (&str, &serde_json::Value)> {
self.values.iter().map(|(k, v)| (k.as_str(), v))
}
pub fn iter_paths(&self) -> impl Iterator<Item = (&str, &Archive)> {
self.paths.iter().map(|(k, v)| (k.as_str(), v))
}
pub fn iter_paths_mut(&mut self) -> impl Iterator<Item = (&str, &mut Archive)> {
self.paths.iter_mut().map(|(k, v)| (k.as_str(), v))
}
pub fn iter_values_mut(&mut self) -> impl Iterator<Item = (&str, &mut serde_json::Value)> {
self.values.iter_mut().map(|(k, v)| (k.as_str(), v))
}
pub fn get_value(&self, key: &str) -> Option<&serde_json::Value> {
self.values.get(key)
}
pub fn get_value_mut(&mut self, key: &str) -> Option<&mut serde_json::Value> {
self.values.get_mut(key)
}
pub fn get_path(&self, key: &str) -> Option<&Archive> {
self.paths.get(key)
}
pub fn get_path_mut(&mut self, key: &str) -> Option<&mut Archive> {
self.paths.get_mut(key)
}
pub fn insert_value(&mut self, key: impl ToCompactString, value: serde_json::Value) {
self.values.insert(key.to_compact_string(), value);
}
pub fn insert_path(&mut self, key: impl ToCompactString, value: Archive) {
self.paths.insert(key.to_compact_string(), value);
}
pub fn remove_value(&mut self, key: &str) -> Option<serde_json::Value> {
self.values.remove(key)
}
pub fn remove_path(&mut self, key: &str) -> Option<Archive> {
self.paths.remove(key)
}
pub fn clear_values(&mut self) {
self.values.clear();
}
pub fn clear_paths(&mut self) {
self.paths.clear();
}
pub fn is_empty_values(&self) -> bool {
self.values.is_empty()
}
pub fn is_empty_paths(&self) -> bool {
self.paths.is_empty()
}
pub fn len_values(&self) -> usize {
self.values.len()
}
pub fn len_paths(&self) -> usize {
self.paths.len()
}
}
impl Archive {
/// Searches for a nested category within the archive using the specified path.
///
/// Given a path (as an iterator of strings), this method traverses the archive hierarchically
/// to locate the target category.
///
/// # Parameters
/// * `path`: The path of the target category, represented as an iterable of strings.
///
/// # Returns
/// An `Option` containing a reference to the found `Archive` (category) if it exists,
/// or `None` otherwise.
pub fn find_path<'s, 'a, T: AsRef<str> + 'a>(
&'s self,
path: impl IntoIterator<Item = T>,
) -> Option<&'s Archive> {
let iter = path.into_iter();
let mut paths = &self.paths;
let mut node = None;
for key in iter {
if let Some(next_node) = paths.get(key.as_ref()) {
node = Some(next_node);
paths = &next_node.paths;
} else {
return None;
}
}
node
}
/// Retrieves a mutable reference to a nested category, creating it if it doesn't exist.
///
/// This method is useful for ensuring a category exists at a certain path, creating any
/// necessary intermediate categories along the way.
///
/// # Parameters
/// * `path`: The path of the target category, represented as an iterable of strings.
///
/// # Returns
/// A mutable reference to the target `Archive` (category).
pub fn find_or_create_path_mut<'s, 'a>(
&'s mut self,
path: impl IntoIterator<Item = &'a str>,
) -> &'s mut Archive {
path.into_iter().fold(self, |node, key| node.paths.entry(key.into()).or_default())
}
/// Generates a differential patch between the current and a newer archive.
///
/// This method examines the differences between the current archive and a provided newer
/// archive. The result is an `Archive` containing only the differences. The method also
/// modifies the `newer` archive in place, removing the elements that are part of the patch.
///
/// # Parameters
/// * `newer`: A mutable reference to the newer version of the archive.
///
/// # Returns
/// An `Archive` containing only the differences between the current and newer archives.
pub fn create_patch(&self, newer: &mut Self) -> Self {
let mut patch = Self::default();
newer.paths.retain(|k, v| {
if let Some(base_v) = self.paths.get(k) {
let patch_v = base_v.create_patch(v);
if !patch_v.is_empty() {
patch.paths.insert(k.clone(), patch_v);
!v.is_empty()
} else {
true
}
} else {
patch.paths.insert(k.clone(), take(v));
false
}
});
newer.values.retain(|k, v| {
if let Some(base_v) = self.values.get(k) {
if *base_v != *v {
patch.values.insert(k.clone(), take(v));
false
} else {
true
}
} else {
patch.values.insert(k.clone(), take(v));
false
}
});
patch
}
/// Checks if the archive is empty.
///
/// An archive is considered empty if it has no categories (paths) and no values.
///
/// # Returns
/// `true` if the archive is empty, otherwise `false`.
pub fn is_empty(&self) -> bool {
self.paths.is_empty() && self.values.is_empty()
}
/// Merges data from another archive into the current one.
///
/// This method recursively merges categories and replaces values from the other archive into
/// the current one. In the case of overlapping categories, it will dive deeper and merge the
/// inner values and categories.
///
/// # Parameters
/// * `other`: The other archive to merge from.
pub fn merge_from(&mut self, other: Self) {
// Recursively merge p
for (k, v) in other.paths {
self.paths.entry(k).or_default().merge_from(v);
}
// Value merge is done with simple replace
for (k, v) in other.values {
self.values.insert(k, v);
}
}
/// Merges data from another archive into a clone of the current one and returns the merged
/// result.
///
/// This method is a combinatory operation that uses `merge_from` under the hood but doesn't
/// modify the current archive in place, instead, it returns a new merged archive.
///
/// # Parameters
/// * `other`: The other archive to merge from.
///
/// # Returns
/// A new `Archive` which is the result of merging the current archive with the provided one.
#[must_use]
pub fn merge(mut self, other: Self) -> Self {
self.merge_from(other);
self
}
}
impl<'a> Deserialize<'a> for Archive {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'a>,
{
struct PathNodeVisit {
build: Archive,
}
impl<'de> serde::de::Visitor<'de> for PathNodeVisit {
type Value = Archive;
fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
formatter.write_str("Object consist of Tilde(~) prefixed objects or ")
}
fn visit_map<A>(mut self, mut map: A) -> Result<Self::Value, A::Error>
where
A: serde::de::MapAccess<'de>,
{
CATEGORY_RULE.with(|rule| {
let rule = rule.take();
while let Some(mut key) = map.next_key::<CompactString>()? {
if !key.is_empty() && rule.is_category(&key) {
key.remove(0); // Exclude initial tilde
let child: Archive = map.next_value()?;
self.build.paths.insert(key, child);
} else {
let value: serde_json::Value = map.next_value()?;
self.build.values.insert(key, value);
}
}
Ok(self.build)
})
}
}
deserializer.deserialize_map(PathNodeVisit { build: Default::default() })
}
}
impl Serialize for Archive {
fn serialize<S>(&self, se: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
let mut map = se.serialize_map(Some(self.paths.len() + self.values.len()))?;
CATEGORY_RULE.with(|rule| {
let rule = rule.take();
let mut key_b = CompactString::default();
for (k, v) in &self.paths {
rule.make_category(k, &mut key_b);
map.serialize_entry(&key_b, v)?;
}
Ok(())
})?;
for (k, v) in &self.values {
debug_assert!(
!k.starts_with('~'),
"Tilde prefixed key '{k}' for field is not allowed!"
);
map.serialize_entry(k, v)?;
}
map.end()
}
}
#[test]
#[allow(clippy::approx_constant)]
fn test_archive_basic() {
let src = r#"
{
"~root_path_1": {
"~subpath1": {
"value1": null,
"value2": {},
"~sub-subpath": {}
},
"~subpath2": {}
},
"~root_path_2": {
"value1": null,
"value2": 31.4,
"value3": "hoho-haha",
"value-obj": {
"~pathlike": 3.141
}
}
}
"#;
let arch: Archive = serde_json::from_str(src).unwrap();
assert!(arch.paths.len() == 2);
let p1 = arch.paths.get("root_path_1").unwrap();
assert!(p1.paths.len() == 2);
assert!(p1.values.is_empty());
let sp1 = p1.paths.get("subpath1").unwrap();
assert!(sp1.paths.contains_key("sub-subpath"));
assert!(sp1.values.len() == 2);
assert!(sp1.values.contains_key("value1"));
assert!(sp1.values.contains_key("value2"));
assert!(sp1.values.get("value1").unwrap().is_null());
assert!(sp1.values.get("value2").unwrap().as_object().unwrap().is_empty());
let p2 = arch.paths.get("root_path_2").unwrap();
assert!(p2.paths.is_empty());
assert!(p2.values.len() == 4);
let newer = r#"
{
"~root_path_1": {
"~subpath1": {
"value1": null,
"value2": {
"hello, world!": 3.141
},
"~sub-subpath": {}
},
"~subpath2": {},
"~new_path": {
"valll": 4.44
}
},
"~root_path_2": {
"value1": null,
"value2": 31.4,
"value3": "hoho-haha",
"value-obj": {
"~pathlike": 3.141
}
}
}
"#;
let newer: Archive = serde_json::from_str(newer).unwrap();
let mut newer_consume = newer.clone();
let patch = Archive::create_patch(&arch, &mut newer_consume);
let merged = arch.clone().merge(patch.clone());
assert_eq!(merged, newer);
assert!(patch.paths.len() == 1);
assert!(patch.paths.contains_key("root_path_1"));
let val = &patch.find_path(["root_path_1", "subpath1"]).unwrap().values;
let val_obj = val.get("value2").unwrap().as_object().unwrap();
assert!(val.contains_key("value2"));
assert!(val_obj.len() == 1);
assert!(val_obj.contains_key("hello, world!"));
assert!(val_obj.get("hello, world!") == Some(&serde_json::Value::from(3.141)));
let val = &patch.find_path(["root_path_1", "new_path"]).unwrap().values;
assert!(val.contains_key("valll"));
assert!(val.get("valll") == Some(&serde_json::Value::from(4.44)));
}