concision_neural/traits/models.rs
1/*
2 appellation: models <module>
3 authors: @FL03
4*/
5use crate::config::NetworkConfig;
6use crate::{DeepModelParams, ModelLayout};
7use crate::{Predict, Train};
8use concision_core::params::Params;
9use concision_data::DatasetBase;
10
11/// The [`Model`] trait defines the core interface for all models; implementors will need to
12/// provide the type of configuration used by the model, the type of layout used by the model,
13/// and the type of parameters used by the model. The crate provides standard, or default,
14/// definitions of both the configuration and layout types, however, for
15pub trait Model<T = f32> {
16 /// The type of configuration used for the model
17 type Config: NetworkConfig<T>;
18 /// The type of [`ModelLayout`] used by the model for this implementation.
19 type Layout: ModelLayout;
20 /// returns an immutable reference to the models configuration; this is typically used to
21 /// access the models hyperparameters (i.e. learning rate, momentum, etc.) and other
22 /// related control parameters.
23 fn config(&self) -> &Self::Config;
24 /// returns a mutable reference to the models configuration; useful for setting hyperparams
25 fn config_mut(&mut self) -> &mut Self::Config;
26 /// returns a copy of the model's current layout (features); a type providing the model
27 /// with a particular number of features for the various layers of a deep neural network.
28 ///
29 /// the layout is used in everything from creation and initialization routines to
30 /// validating the dimensionality of the model's inputs, outputs, training data, etc.
31 fn layout(&self) -> Self::Layout;
32 /// returns an immutable reference to the model parameters
33 fn params(&self) -> &DeepModelParams<T>;
34 /// returns a mutable reference to the model's parameters
35 fn params_mut(&mut self) -> &mut DeepModelParams<T>;
36 /// propagates the input through the model; each layer is applied in sequence meaning that
37 /// the output of each previous layer is the input to the next layer. This pattern
38 /// repeats until the output layer returns the final result.
39 ///
40 /// By default, the trait simply passes each output from one layer to the next, however,
41 /// custom models will likely override this method to inject activation methods and other
42 /// related logic
43 fn predict<U, V>(&self, inputs: &U) -> crate::ModelResult<V>
44 where
45 Self: Predict<U, Output = V>,
46 {
47 Predict::predict(self, inputs)
48 }
49 /// a convience method that trains the model using the provided dataset; this method
50 /// requires that the model implements the [`Train`] trait and that the dataset
51 fn train<U, V, W>(&mut self, dataset: &DatasetBase<U, V>) -> crate::ModelResult<W>
52 where
53 Self: Train<U, V, Output = W>,
54 {
55 Train::train(self, dataset.records(), dataset.targets())
56 }
57}
58
59pub trait ModelExt<T>: Model<T> {
60 /// [`replace`](core::mem::replace) the current configuration and returns the old one;
61 fn replace_config(&mut self, config: Self::Config) -> Self::Config {
62 core::mem::replace(self.config_mut(), config)
63 }
64 /// [`replace`](core::mem::replace) the current model parameters and returns the old one
65 fn replace_params(&mut self, params: DeepModelParams<T>) -> DeepModelParams<T> {
66 core::mem::replace(self.params_mut(), params)
67 }
68 /// overrides the current configuration and returns a mutable reference to the model
69 fn set_config(&mut self, config: Self::Config) -> &mut Self {
70 *self.config_mut() = config;
71 self
72 }
73 /// overrides the current model parameters and returns a mutable reference to the model
74 fn set_params(&mut self, params: DeepModelParams<T>) -> &mut Self {
75 *self.params_mut() = params;
76 self
77 }
78 /// returns an immutable reference to the input layer;
79 #[inline]
80 fn input_layer(&self) -> &Params<T> {
81 self.params().input()
82 }
83 /// returns a mutable reference to the input layer;
84 #[inline]
85 fn input_layer_mut(&mut self) -> &mut Params<T> {
86 self.params_mut().input_mut()
87 }
88 /// returns an immutable reference to the hidden layer(s);
89 #[inline]
90 fn hidden_layers(&self) -> &Vec<Params<T>> {
91 self.params().hidden()
92 }
93 /// returns a mutable reference to the hidden layer(s);
94 #[inline]
95 fn hidden_layers_mut(&mut self) -> &mut Vec<Params<T>> {
96 self.params_mut().hidden_mut()
97 }
98 /// returns an immutable reference to the output layer;
99 #[inline]
100 fn output_layer(&self) -> &Params<T> {
101 self.params().output()
102 }
103 /// returns a mutable reference to the output layer;
104 #[inline]
105 fn output_layer_mut(&mut self) -> &mut Params<T> {
106 self.params_mut().output_mut()
107 }
108 #[inline]
109 fn set_input_layer(&mut self, layer: Params<T>) -> &mut Self {
110 self.params_mut().set_input(layer);
111 self
112 }
113 #[inline]
114 fn set_hidden_layers(&mut self, layers: Vec<Params<T>>) -> &mut Self {
115 self.params_mut().set_hidden(layers);
116 self
117 }
118 #[inline]
119 fn set_output_layer(&mut self, layer: Params<T>) -> &mut Self {
120 self.params_mut().set_output(layer);
121 self
122 }
123 /// returns a 2-tuple representing the dimensions of the input layer; (input, hidden)
124 fn input_dim(&self) -> (usize, usize) {
125 self.layout().dim_input()
126 }
127 /// returns a 2-tuple representing the dimensions of the hidden layers; (hidden, hidden)
128 fn hidden_dim(&self) -> (usize, usize) {
129 self.layout().dim_hidden()
130 }
131 /// returns the total number of hidden layers in the model;
132 fn hidden_layers_count(&self) -> usize {
133 self.layout().layers()
134 }
135 /// returns a 2-tuple representing the dimensions of the output layer; (hidden, output)
136 fn output_dim(&self) -> (usize, usize) {
137 self.layout().dim_output()
138 }
139}
140
141/// The [`DeepNeuralNetwork`] trait is a specialization of the [`Model`] trait that
142/// provides additional functionality for deep neural networks. This trait is
143pub trait DeepNeuralNetwork<T = f32>: Model<T> {}
144
145impl<M, T> ModelExt<T> for M
146where
147 M: Model<T>,
148 M::Layout: ModelLayout,
149{
150}