concision_neural/model/mod.rs
1/*
2 Appellation: model <module>
3 Contrib: @FL03
4*/
5//! This module provides the scaffolding for creating models and layers in a neural network.
6
7#[doc(inline)]
8pub use self::{config::StandardModelConfig, layout::*, model_params::*, trainer::Trainer};
9
10pub mod config;
11pub mod layout;
12pub mod model_params;
13pub mod trainer;
14
15mod impls {
16 pub mod impl_model_params;
17 #[cfg(feature = "rand")]
18 pub mod impl_model_params_rand;
19}
20
21pub(crate) mod prelude {
22 #[doc(inline)]
23 pub use super::config::*;
24 #[doc(inline)]
25 pub use super::layout::*;
26 #[doc(inline)]
27 pub use super::model_params::*;
28 #[doc(inline)]
29 pub use super::trainer::*;
30 #[doc(inline)]
31 pub use super::{Model, ModelExt};
32}
33
34use crate::{NetworkConfig, Predict, Train};
35use concision_core::params::Params;
36use concision_data::DatasetBase;
37
38/// The base interface for all models; each model provides access to a configuration object
39/// defined as the associated type [`Config`](Model::Config). The configuration object is used
40/// to provide hyperparameters and other control related parameters. In addition, the model's
41/// layout is defined by the [`features`](Model::features) method which aptly returns a copy of
42/// its [ModelFeatures] object.
43pub trait Model<T = f32> {
44 /// The configuration type for the model
45 type Config: NetworkConfig<T>;
46 /// the type of layout used by the model
47 type Layout;
48 /// returns an immutable reference to the models configuration; this is typically used to
49 /// access the models hyperparameters (i.e. learning rate, momentum, etc.) and other
50 /// related control parameters.
51 fn config(&self) -> &Self::Config;
52 /// returns a mutable reference to the models configuration; useful for setting hyperparams
53 fn config_mut(&mut self) -> &mut Self::Config;
54 /// returns a copy of the model's current layout (features); a type providing the model
55 /// with a particular number of features for the various layers of a deep neural network.
56 ///
57 /// the layout is used in everything from creation and initialization routines to
58 /// validating the dimensionality of the model's inputs, outputs, training data, etc.
59 fn layout(&self) -> Self::Layout;
60 /// returns an immutable reference to the model parameters
61 fn params(&self) -> &ModelParams<T>;
62 /// returns a mutable reference to the model's parameters
63 fn params_mut(&mut self) -> &mut ModelParams<T>;
64 /// propagates the input through the model; each layer is applied in sequence meaning that
65 /// the output of each previous layer is the input to the next layer. This pattern
66 /// repeats until the output layer returns the final result.
67 ///
68 /// By default, the trait simply passes each output from one layer to the next, however,
69 /// custom models will likely override this method to inject activation methods and other
70 /// related logic
71 fn predict<U, V>(&self, inputs: &U) -> crate::NeuralResult<V>
72 where
73 Self: Predict<U, Output = V>,
74 {
75 Predict::predict(self, inputs)
76 }
77 /// a convience method that trains the model using the provided dataset; this method
78 /// requires that the model implements the [`Train`] trait and that the dataset
79 fn train<U, V, W>(&mut self, dataset: &DatasetBase<U, V>) -> crate::NeuralResult<W>
80 where
81 Self: Train<U, V, Output = W>,
82 {
83 Train::train(self, dataset.records(), dataset.targets())
84 }
85}
86
87pub trait ModelExt<T>: Model<T>
88where
89 Self::Layout: ModelLayout,
90{
91 /// [`replace`](core::mem::replace) the current configuration and returns the old one;
92 fn replace_config(&mut self, config: Self::Config) -> Self::Config {
93 core::mem::replace(self.config_mut(), config)
94 }
95 /// [`replace`](core::mem::replace) the current model parameters and returns the old one
96 fn replace_params(&mut self, params: ModelParams<T>) -> ModelParams<T> {
97 core::mem::replace(self.params_mut(), params)
98 }
99 /// overrides the current configuration and returns a mutable reference to the model
100 fn set_config(&mut self, config: Self::Config) -> &mut Self {
101 *self.config_mut() = config;
102 self
103 }
104 /// overrides the current model parameters and returns a mutable reference to the model
105 fn set_params(&mut self, params: ModelParams<T>) -> &mut Self {
106 *self.params_mut() = params;
107 self
108 }
109 /// returns an immutable reference to the input layer;
110 #[inline]
111 fn input_layer(&self) -> &Params<T> {
112 self.params().input()
113 }
114 /// returns a mutable reference to the input layer;
115 #[inline]
116 fn input_layer_mut(&mut self) -> &mut Params<T> {
117 self.params_mut().input_mut()
118 }
119 /// returns an immutable reference to the hidden layer(s);
120 #[inline]
121 fn hidden_layers(&self) -> &Vec<Params<T>> {
122 self.params().hidden()
123 }
124 /// returns a mutable reference to the hidden layer(s);
125 #[inline]
126 fn hidden_layers_mut(&mut self) -> &mut Vec<Params<T>> {
127 self.params_mut().hidden_mut()
128 }
129 /// returns an immutable reference to the output layer;
130 #[inline]
131 fn output_layer(&self) -> &Params<T> {
132 self.params().output()
133 }
134 /// returns a mutable reference to the output layer;
135 #[inline]
136 fn output_layer_mut(&mut self) -> &mut Params<T> {
137 self.params_mut().output_mut()
138 }
139 #[inline]
140 fn set_input_layer(&mut self, layer: Params<T>) -> &mut Self {
141 self.params_mut().set_input(layer);
142 self
143 }
144 #[inline]
145 fn set_hidden_layers(&mut self, layers: Vec<Params<T>>) -> &mut Self {
146 self.params_mut().set_hidden(layers);
147 self
148 }
149 #[inline]
150 fn set_output_layer(&mut self, layer: Params<T>) -> &mut Self {
151 self.params_mut().set_output(layer);
152 self
153 }
154 /// returns a 2-tuple representing the dimensions of the input layer; (input, hidden)
155 fn input_dim(&self) -> (usize, usize) {
156 self.layout().dim_input()
157 }
158 /// returns a 2-tuple representing the dimensions of the hidden layers; (hidden, hidden)
159 fn hidden_dim(&self) -> (usize, usize) {
160 self.layout().dim_hidden()
161 }
162 /// returns the total number of hidden layers in the model;
163 fn hidden_layers_count(&self) -> usize {
164 self.layout().layers()
165 }
166 /// returns a 2-tuple representing the dimensions of the output layer; (hidden, output)
167 fn output_dim(&self) -> (usize, usize) {
168 self.layout().dim_output()
169 }
170}
171
172impl<M, T> ModelExt<T> for M
173where
174 M: Model<T>,
175 M::Layout: ModelLayout,
176{
177}
178
179/// The [`DeepNeuralNetwork`] trait is a specialization of the [`Model`] trait that
180/// provides additional functionality for deep neural networks. This trait is
181pub trait DeepNeuralNetwork<T = f32>: Model<T> {}
182
183pub trait ModelTrainer<T> {
184 type Model: Model<T>;
185 /// returns a model trainer prepared to train the model; this is a convenience method
186 /// that creates a new trainer instance and returns it. Trainers are lazily evaluated
187 /// meaning that the training process won't begin until the user calls the `begin` method.
188 fn trainer<'a, U, V>(
189 &mut self,
190 dataset: DatasetBase<U, V>,
191 model: &'a mut Self::Model,
192 ) -> Trainer<'a, Self::Model, T, DatasetBase<U, V>>
193 where
194 Self: Sized,
195 T: Default,
196 for<'b> &'b mut Self::Model: Model<T>,
197 {
198 Trainer::new(model, dataset)
199 }
200}