Crate concision_core

Source
Expand description

Core abstractions and utilities for machine learning.

Re-exports§

pub use super::gradient::*;
pub use super::patterns::*;
pub use super::tensor::*;

Modules§

activate
This module implements various activation functions for neural networks.
data
this module implements a dataset abstraction for machine learning tasks.
error
init
This module works to provide the crate with various initialization methods suitable for machine-learning models.
math
A suite of mathematical tool and utilities tailored toward neural networks.
ops
params
Parameters for constructing neural network models. This module implements parameters using the ParamsBase struct and its associated types. The ParamsBase struct provides:
prelude
traits
types
utils

Structs§

PadActionIter
An iterator over the variants of PadAction
Padding
ParamsBase
this structure extends the ArrayBase type to include bias

Enums§

Error
PadAction
PadError
PadMode

Traits§

Affine
apply an affine transformation to a tensor; affine transformation is defined as mul * self + add
ApplyGradient
A trait declaring basic gradient-related routines for a neural network
ApplyGradientExt
This trait extends the ApplyGradient trait by allowing for momentum-based optimization
ArrayLike
Backward
A simple trait denoting a single backward pass through a layer of a neural network; the trait
Clip
ClipMut
This trait enables tensor clipping; it is implemented for ArrayBase
CrossEntropy
DecrementAxis
This trait enables an array to remove an axis from itself
DefaultLike
DropOut
[Dropout] randomly zeroizes elements with a given probability (p).
FillLike
Forward
This trait defines the forward pass of the network
Heavyside
IncrementAxis
Init
The Init trait is a consuming initialization method
InitInplace
A trait for initializing an object in-place
IntoAxis
Inverse
this trait enables the inversion of a matrix
IsSquare
L1Norm
a trait for computing the L1 norm of a tensor or array
L2Norm
a trait for computing the L2 norm of a tensor or array
LinearActivation
MaskFill
This trait is used to fill an array with a value based on a mask. The mask is a boolean array of the same shape as the array.
Matmul
A trait denoting objects capable of matrix multiplication.
Matpow
a trait denoting objects capable of matrix exponentiation
MeanAbsoluteError
MeanSquaredError
NdActivate
NdActivateMut
NdLike
Norm
OnesLike
Pad
Predict
This trait defines the prediction of the network
ReLU
Sigmoid
Softmax
SoftmaxAxis
Tanh
Train
This trait defines the training process for the network
Transpose
the trait denotes the ability to transpose a tensor
Unsqueeze
ZerosLike

Functions§

heavyside
Heaviside activation function
pad
pad_to
relu
relu_derivative
sigmoid
the sigmoid activation function: $f(x) = \frac{1}{1 + e^{-x}}$
sigmoid_derivative
the derivative of the sigmoid function
softmax
softmax_axis
tanh
tanh_derivative

Type Aliases§

PadResult
Params
a type alias for owned parameters
ParamsView
a type alias for an immutable view of the parameters
ParamsViewMut
a type alias for a mutable view of the parameters
Result
a type alias for a Result with a Error