Struct comrak::Arena

source ·
pub struct Arena<T> { /* private fields */ }
Expand description

An arena of objects of type T.

Example

use typed_arena::Arena;

struct Monster {
    level: u32,
}

let monsters = Arena::new();

let vegeta = monsters.alloc(Monster { level: 9001 });
assert!(vegeta.level > 9000);

Implementations§

Construct a new arena.

Example
use typed_arena::Arena;

let arena = Arena::new();

Construct a new arena with capacity for n values pre-allocated.

Example
use typed_arena::Arena;

let arena = Arena::with_capacity(1337);

Return the size of the arena

This is useful for using the size of previous typed arenas to build new typed arenas with large enough spaces.

Example
 use typed_arena::Arena;

 let arena = Arena::with_capacity(0);
 let a = arena.alloc(1);
 let b = arena.alloc(2);

 assert_eq!(arena.len(), 2);

Allocates a value in the arena, and returns a mutable reference to that value.

Example
use typed_arena::Arena;

let arena = Arena::new();
let x = arena.alloc(42);
assert_eq!(*x, 42);

Uses the contents of an iterator to allocate values in the arena. Returns a mutable slice that contains these values.

Example
use typed_arena::Arena;

let arena = Arena::new();
let abc = arena.alloc_extend("abcdefg".chars().take(3));
assert_eq!(abc, ['a', 'b', 'c']);

Allocates space for a given number of values, but doesn’t initialize it.

Unsafety and Undefined Behavior

The same caveats that apply to std::mem::uninitialized apply here:

This is incredibly dangerous and should not be done lightly. Deeply consider initializing your memory with a default value instead.

In particular, it is easy to trigger undefined behavior by allocating uninitialized values, failing to properly initialize them, and then the Arena will attempt to drop them when it is dropped. Initializing an uninitialized value is trickier than it might seem: a normal assignment to a field will attempt to drop the old, uninitialized value, which almost certainly also triggers undefined behavior. You must also consider all the places where your code might “unexpectedly” drop values earlier than it “should” because of unwinding during panics.

Returns unused space.

This unused space is still not considered “allocated”. Therefore, it won’t be dropped unless there are further calls to alloc, alloc_uninitialized, or alloc_extend which is why the method is safe.

Convert this Arena into a Vec<T>.

Items in the resulting Vec<T> appear in the order that they were allocated in.

Example
use typed_arena::Arena;

let arena = Arena::new();

arena.alloc("a");
arena.alloc("b");
arena.alloc("c");

let easy_as_123 = arena.into_vec();

assert_eq!(easy_as_123, vec!["a", "b", "c"]);

Returns an iterator that allows modifying each value.

Items are yielded in the order that they were allocated.

Example
use typed_arena::Arena;

#[derive(Debug, PartialEq, Eq)]
struct Point { x: i32, y: i32 };

let mut arena = Arena::new();

arena.alloc(Point { x: 0, y: 0 });
arena.alloc(Point { x: 1, y: 1 });

for point in arena.iter_mut() {
    point.x += 10;
}

let points = arena.into_vec();

assert_eq!(points, vec![Point { x: 10, y: 0 }, Point { x: 11, y: 1 }]);
Immutable Iteration

Note that there is no corresponding iter method. Access to the arena’s contents requries mutable access to the arena itself.

use typed_arena::Arena;

let mut arena = Arena::new();
let x = arena.alloc(1);

// borrow error!
for i in arena.iter_mut() {
    println!("i: {}", i);
}

// borrow error!
*x = 2;

Trait Implementations§

Returns the “default value” for a type. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.