1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//! Calculate cognitive complexity of Rust code.
//!
//! Based on [Cognitive Complexity][pdf] by G. Ann Campbell.
//!
//! ## Getting started
//!
//! You'll need to bring the [`Complexity`] trait into scope, and probably some
//! things from [`syn`].
//!
//! ```rust
//! use complexity::Complexity;
//! use syn::{Expr, parse_quote};
//! ```
//!
//! Complexity of expressions and other [`syn`] types is as simple as calling
//! [`.complexity()`] on an instance of that type.
//!
//! ```rust
//! # use complexity::Complexity;
//! # use syn::{Expr, parse_quote};
//! let expr: Expr = parse_quote! {
//!     for element in iterable { // +1
//!         if something {        // +2 (nesting = 1)
//!             do_something();
//!         }
//!     }
//! };
//! assert_eq!(expr.complexity(), 3);
//! ```
//!
//! ## Examples
//!
//! The implementation of cognitive complexity in this crate is heavily based on
//! [Cognitive Complexity][pdf] by G. Ann Campbell. And reading it would be
//! beneficial to understanding how the complexity index is calculated.
//!
//! Loops and structures that introduce branching increment the complexity by
//! one each. Some syntax structures introduce a "nesting" level which increases
//! some expressions complexity by that nesting level in addition to their
//! regular increment. In the example below we see how two nested loops and an
//! if statement can produce quite a high complexity of **7**.
//!
//! ```rust
//! use complexity::Complexity;
//! use syn::{ItemFn, parse_quote};
//!
//! let func: ItemFn = parse_quote! {
//!     fn sum_of_primes(max: u64) -> u64 {
//!         let mut total = 0;
//!         'outer: for i in 1..=max {   // +1
//!             for j in 2..i {          // +2 (nesting = 1)
//!                 if i % j == 0 {      // +3 (nesting = 2)
//!                     continue 'outer; // +1
//!                 }
//!             }
//!             total += i;
//!         }
//!     }
//! };
//! assert_eq!(func.complexity(), 7);
//! ```
//!
//! But some structures are rewarded. Particularly a `match` statement, which
//! only increases the complexity by one no matter how many branches there are.
//! (It does increase the nesting level though.) In the example below we see how
//! even though there are a lot of branches in the code (which would contribute
//! a lot to a more traditional *cyclomatic complexity* measurement), the
//! complexity is quite low at **1**.
//!
//! ```rust
//! use complexity::Complexity;
//! use syn::{ItemFn, parse_quote};
//!
//! let func: ItemFn = parse_quote! {
//!     fn get_words(number: u64) -> &str {
//!         match number {       // +1
//!             1 => "one",
//!             2 => "a couple",
//!             3 => "a few",
//!             _ => "lots",
//!         }
//!     }
//! };
//! assert_eq!(func.complexity(), 1);
//! ```
//!
//! An example is provided to calculate and nicely print out the cognitive
//! complexity of each function and method in an entire Rust file. See
//! [examples/lint-files.rs](examples/lint-files.rs). You can run it on Rust
//! files like this:
//!
//! ```sh
//! cargo run --example lint-files -- src/
//! ```
//!
//! [pdf]: https://www.sonarsource.com/docs/CognitiveComplexity.pdf
//! [`Complexity`]: trait.Complexity.html
//! [`.complexity()`]: trait.Complexity.html#tymethod.complexity
//! [`syn`]: https://docs.rs/syn/1

use std::{iter, ops};

use syn::*;

/////////////////////////////////////////////////////////////////////////
// Complexity trait
/////////////////////////////////////////////////////////////////////////

mod private {
    pub trait Sealed {}
    impl Sealed for super::Expr {}
    impl Sealed for super::ItemFn {}
    impl Sealed for super::ImplItemMethod {}
}

/// A trait for calculating the cognitive complexity of a Rust type.
///
/// This is a *sealed* trait so only this crate can implement it.
pub trait Complexity: private::Sealed {
    /// Returns the cognitive complexity index for the implementor.
    fn complexity(&self) -> u32;
}

impl Complexity for Expr {
    fn complexity(&self) -> u32 {
        eval_expr(self, State::default()).0
    }
}

impl Complexity for ItemFn {
    fn complexity(&self) -> u32 {
        eval_block(&self.block, State::default()).0
    }
}

impl Complexity for ImplItemMethod {
    fn complexity(&self) -> u32 {
        eval_block(&self.block, State::default()).0
    }
}

/////////////////////////////////////////////////////////////////////////
// Index type
/////////////////////////////////////////////////////////////////////////

/// Represents a complexity index.
#[derive(Debug, Clone, Copy)]
struct Index(u32);

impl Index {
    /// Construct a new zero `Index` that does not contribute to complexity.
    fn zero() -> Self {
        Self(0)
    }

    /// Construct a new `Index` that adds one to the complexity.
    fn one() -> Self {
        Self(1)
    }

    /// Construct a new `Index` that adds one to the complexity and one for each
    /// level of nesting.
    fn with_context(state: State) -> Self {
        Self(state.nesting + 1)
    }
}

impl ops::Add for Index {
    type Output = Self;

    /// Add one `Index` to another.
    ///
    /// This simply is the addition of both complexities.
    fn add(self, other: Self) -> Self {
        Self(self.0 + other.0)
    }
}

impl iter::Sum<Index> for Index {
    /// Sum an iterable of `Index` by simply accumulating all the complexities
    /// into one.
    fn sum<I>(iter: I) -> Self
    where
        I: Iterator<Item = Self>,
    {
        iter.fold(Self::zero(), ops::Add::add)
    }
}

/////////////////////////////////////////////////////////////////////////
// Logical boolean operator type
/////////////////////////////////////////////////////////////////////////

/// Represents a logical boolean operator.
#[derive(Debug, Clone, Copy, PartialEq)]
enum LogBoolOp {
    /// The `!` operator (logical not).
    Not,
    /// The `&&` operator (logical and).
    And,
    /// The `||` operator (logical or).
    Or,
}

impl LogBoolOp {
    /// Create a new `LogBoolOp` from a `syn::UnOp`.
    fn from_un_op(un_op: UnOp) -> Option<Self> {
        match un_op {
            UnOp::Not(_) => Some(Self::Not),
            _ => None,
        }
    }

    /// Create a new `LogBoolOp` from a `syn::BinOp`.
    fn from_bin_op(bin_op: &BinOp) -> Option<Self> {
        match bin_op {
            BinOp::And(_) => Some(Self::And),
            BinOp::Or(_) => Some(Self::Or),
            _ => None,
        }
    }

    /// Compares this `LogBoolOp` with the previous one and returns a complexity
    /// index.
    fn eval_based_on_prev(self, prev: Option<Self>) -> Index {
        match (prev, self) {
            (Some(prev), current) => {
                if prev == current {
                    Index::zero()
                } else {
                    Index::one()
                }
            }
            (None, _) => Index::one(),
        }
    }
}

/////////////////////////////////////////////////////////////////////////
// State type
/////////////////////////////////////////////////////////////////////////

/// Represents the current state during parsing. We use this type to track the
/// nesting level and the previous logical boolean operator.
#[derive(Debug, Default, Clone, Copy)]
struct State {
    /// The nesting level.
    nesting: u32,
    /// The previous logical boolean operator.
    log_bool_op: Option<LogBoolOp>,
}

impl State {
    /// Create a new `State` with an extra level of nesting.
    fn increase_nesting(self) -> Self {
        Self {
            nesting: self.nesting + 1,
            log_bool_op: self.log_bool_op,
        }
    }
}

/////////////////////////////////////////////////////////////////////////
// Evaluation functions
/////////////////////////////////////////////////////////////////////////

/// Returns the complexity of a `syn::Block`.
fn eval_block(block: &Block, state: State) -> Index {
    block
        .stmts
        .iter()
        .map(|e| eval_stmt(e, state))
        .sum::<Index>()
}

/// Returns the complexity of a `syn::Stmt`.
fn eval_stmt(stmt: &Stmt, state: State) -> Index {
    match stmt {
        Stmt::Local(Local {
            init: Some((_, expr)),
            ..
        }) => eval_expr(expr, state),
        Stmt::Local(Local { init: None, .. }) => Index::zero(),
        Stmt::Item(item) => eval_item(item, state),
        Stmt::Expr(expr) | Stmt::Semi(expr, _) => eval_expr(expr, state),
    }
}

/// Returns the complexity of a `syn::Item`.
fn eval_item(item: &Item, state: State) -> Index {
    match item {
        Item::Const(ItemConst { expr, .. }) => eval_expr(expr, state),
        Item::Static(ItemStatic { expr, .. }) => eval_expr(expr, state),
        _ => Index::zero(),
    }
}

/// Returns the complexity of a `syn::ExprUnary`.
///
/// This function also updates the previous logical boolean operator if it is
/// `!`.
fn eval_expr_unary(expr_unary: &ExprUnary, mut state: State) -> Index {
    let ExprUnary { op, expr, .. } = expr_unary;
    if let Some(current) = LogBoolOp::from_un_op(*op) {
        state.log_bool_op = Some(current);
    }
    eval_expr(expr, state)
}

/// Returns the complexity of a `syn::ExprBinary`.
///
/// This function handles logical boolean operators `&&` and `||` by doing the
/// following:
/// - If the operator is the different then add one to the complexity.
/// - Update the previous logical boolean operator.
fn eval_expr_binary(expr_binary: &ExprBinary, mut state: State) -> Index {
    let ExprBinary {
        left, op, right, ..
    } = expr_binary;
    let index = match LogBoolOp::from_bin_op(op) {
        Some(current) => {
            let index = current.eval_based_on_prev(state.log_bool_op);
            state.log_bool_op = Some(current);
            index
        }
        None => Index::zero(),
    };
    index + eval_expr(left, state) + eval_expr(right, state)
}

/// Returns the complexity of a `syn::ExprRange`.
fn eval_expr_range(expr_range: &ExprRange, state: State) -> Index {
    let ExprRange { from, to, .. } = expr_range;
    from.as_ref()
        .map(|e| eval_expr(e, state))
        .unwrap_or_else(Index::zero)
        + to.as_ref()
            .map(|e| eval_expr(e, state))
            .unwrap_or_else(Index::zero)
}

/// Returns the complexity of a `syn::ExprIf`.
fn eval_expr_if(expr_if: &ExprIf, state: State) -> Index {
    let ExprIf {
        cond,
        then_branch,
        else_branch,
        ..
    } = expr_if;
    Index::with_context(state)
        + eval_expr(cond, state)
        + eval_block(then_branch, state.increase_nesting())
        + else_branch
            .as_ref()
            .map(|(_, expr)| Index::one() + eval_expr(&expr, state.increase_nesting()))
            .unwrap_or_else(Index::zero)
}

/// Returns the complexity of a `syn::ExprMatch`.
fn eval_expr_match(expr_match: &ExprMatch, state: State) -> Index {
    let ExprMatch { expr, arms, .. } = expr_match;
    Index::with_context(state)
        + eval_expr(expr, state)
        + arms
            .iter()
            .map(|arm| {
                arm.guard
                    .as_ref()
                    .map(|(_, expr)| eval_expr(&expr, state))
                    .unwrap_or_else(Index::zero)
                    + eval_expr(&arm.body, state.increase_nesting())
            })
            .sum::<Index>()
}

/// Returns the complexity of a `syn::ExprForLoop`.
fn eval_expr_for_loop(expr_for_loop: &ExprForLoop, state: State) -> Index {
    let ExprForLoop { expr, body, .. } = expr_for_loop;
    Index::with_context(state) + eval_expr(expr, state) + eval_block(body, state.increase_nesting())
}

/// Returns the complexity of a `syn::ExprWhile`.
fn eval_expr_while(expr_while: &ExprWhile, state: State) -> Index {
    let ExprWhile { cond, body, .. } = expr_while;
    Index::with_context(state) + eval_expr(cond, state) + eval_block(body, state.increase_nesting())
}

/// Returns the complexity of a `syn::ExprStruct`.
fn eval_expr_struct(expr_struct: &ExprStruct, state: State) -> Index {
    let ExprStruct { fields, rest, .. } = expr_struct;
    fields
        .iter()
        .map(|v| eval_expr(&v.expr, state))
        .sum::<Index>()
        + rest
            .as_ref()
            .map(|e| eval_expr(e, state))
            .unwrap_or_else(Index::zero)
}

/// Returns the complexity of a `syn::ExprCall`.
fn eval_expr_call(expr_call: &ExprCall, state: State) -> Index {
    let ExprCall { func, args, .. } = expr_call;
    eval_expr(func, state) + args.iter().map(|a| eval_expr(a, state)).sum::<Index>()
}

/// Returns the complexity of a `syn::ExprMethodCall`.
fn eval_expr_method_call(expr_method_call: &ExprMethodCall, state: State) -> Index {
    let ExprMethodCall { receiver, args, .. } = expr_method_call;
    eval_expr(receiver, state) + args.iter().map(|a| eval_expr(a, state)).sum::<Index>()
}

/// Returns the complexity of a `syn::Expr`.
///
/// This function contains most of the logic for calculating cognitive
/// complexity. Expressions that create nesting increase the complexity and
/// expressions that increase the branching increasing the complexity.
fn eval_expr(expr: &Expr, state: State) -> Index {
    match expr {
        // Expressions that map to multiple expressions.
        // --------------------------------------------
        Expr::Array(ExprArray { elems, .. }) | Expr::Tuple(ExprTuple { elems, .. }) => {
            elems.iter().map(|e| eval_expr(e, state)).sum()
        }

        // Unary and binary operators.
        // ---------------------------
        // These are handled specially because of logical boolean operator complexity.
        Expr::Unary(expr_unary) => eval_expr_unary(expr_unary, state),
        Expr::Binary(expr_binary) => eval_expr_binary(expr_binary, state),

        // Expressions that have a left and right part.
        // --------------------------------------------
        Expr::Assign(ExprAssign { left, right, .. })
        | Expr::AssignOp(ExprAssignOp { left, right, .. })
        | Expr::Index(ExprIndex {
            expr: left,
            index: right,
            ..
        })
        | Expr::Repeat(ExprRepeat {
            expr: left,
            len: right,
            ..
        }) => eval_expr(left, state) + eval_expr(right, state),

        Expr::Range(expr_range) => eval_expr_range(expr_range, state),

        // Expressions that create a nested block like `async { .. }`.
        // -----------------------------------------------------------
        Expr::Async(ExprAsync { block, .. })
        | Expr::Block(ExprBlock { block, .. })
        | Expr::Loop(ExprLoop { body: block, .. })
        | Expr::TryBlock(ExprTryBlock { block, .. })
        | Expr::Unsafe(ExprUnsafe { block, .. }) => eval_block(block, state.increase_nesting()),
        Expr::ForLoop(expr_for_loop) => eval_expr_for_loop(expr_for_loop, state),
        Expr::While(expr_while) => eval_expr_while(expr_while, state),

        // Expressions that do not not nest any further, and do not contribute to complexity.
        // ----------------------------------------------------------------------------------
        Expr::Lit(_) | Expr::Path(_) => Index::zero(),

        // Expressions that wrap a single expression.
        // ------------------------------------------
        Expr::Await(ExprAwait { base: expr, .. })
        | Expr::Box(ExprBox { expr, .. })
        | Expr::Break(ExprBreak {
            expr: Some(expr), ..
        })
        | Expr::Cast(ExprCast { expr, .. })
        | Expr::Closure(ExprClosure { body: expr, .. })
        | Expr::Field(ExprField { base: expr, .. })
        | Expr::Group(ExprGroup { expr, .. })
        | Expr::Let(ExprLet { expr, .. })
        | Expr::Paren(ExprParen { expr, .. })
        | Expr::Reference(ExprReference { expr, .. })
        | Expr::Return(ExprReturn {
            expr: Some(expr), ..
        })
        | Expr::Try(ExprTry { expr, .. })
        | Expr::Type(ExprType { expr, .. })
        | Expr::Yield(ExprYield {
            expr: Some(expr), ..
        }) => eval_expr(expr, state),

        // Expressions that introduce branching.
        // -------------------------------------
        Expr::If(expr_if) => eval_expr_if(expr_if, state),
        Expr::Match(expr_match) => eval_expr_match(expr_match, state),
        Expr::Continue(_) | Expr::Break(_) => Index::one(),

        // Expressions that call functions / construct types.
        // --------------------------------------------------
        Expr::Struct(expr_struct) => eval_expr_struct(expr_struct, state),
        Expr::Call(expr_call) => eval_expr_call(expr_call, state),
        Expr::MethodCall(expr_method_call) => eval_expr_method_call(expr_method_call, state),
        // FIXME: should we attempt to parse macro the tokens into something that we can calculate
        // the complexity for?
        Expr::Macro(_) => Index::zero(),

        // `Expr` is non-exhaustive, so this has to be here. But we should have handled everything.
        _ => Index::zero(),
    }
}

/////////////////////////////////////////////////////////////////////////
// Unit tests
/////////////////////////////////////////////////////////////////////////

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn if_statement() {
        let expr: Expr = parse_quote! {
            if true {             // +1
                println!("test");
            }
        };
        assert_eq!(expr.complexity(), 1);
    }

    #[test]
    fn if_statement_nesting_increment() {
        let expr: Expr = parse_quote! {
            if true {                 // +1
                if true {             // +2 (nesting = 1)
                    println!("test");
                }
            }
        };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn if_else_statement_no_nesting_increment() {
        let expr: Expr = parse_quote! {
            if true {                 // +1
                if true {             // +2 (nesting = 1)
                    println!("test");
                } else {              // +1
                    println!("test");
                }
            }
        };
        assert_eq!(expr.complexity(), 4);
    }

    #[test]
    fn for_loop() {
        let expr: Expr = parse_quote! {
            for element in iterable { // +1
                if true {             // +2 (nesting = 1)
                    println!("test");
                }
            }
        };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn for_loop_nesting_increment() {
        let expr: Expr = parse_quote! {
            if true {                     // +1
                for element in iterable { // +2 (nesting = 1)
                    println!("test");
                }
            }
        };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn while_loop() {
        let expr: Expr = parse_quote! {
            while true {              // +1
                if true {             // +2 (nesting = 1)
                    println!("test");
                }
            }
        };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn while_loop_nesting_increment() {
        let expr: Expr = parse_quote! {
            if true {                 // +1
                while true {          // +2 (nesting = 1)
                    println!("test");
                }
            }
        };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn match_statement_nesting_increment() {
        let expr: Expr = parse_quote! {
            if true {                          // +1
                match true {                   // +2 (nesting = 1)
                    true => println!("test"),
                    false => println!("test"),
                }
            }
        };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn logical_boolean_operators_same() {
        let expr: Expr = parse_quote! { x && y };
        assert_eq!(expr.complexity(), 1);
        let expr: Expr = parse_quote! { x && y && z };
        assert_eq!(expr.complexity(), 1);
        let expr: Expr = parse_quote! { w && x && y && z };
        assert_eq!(expr.complexity(), 1);
        let expr: Expr = parse_quote! { x || y };
        assert_eq!(expr.complexity(), 1);
        let expr: Expr = parse_quote! { x || y || z };
        assert_eq!(expr.complexity(), 1);
        let expr: Expr = parse_quote! { w || x || y || z };
        assert_eq!(expr.complexity(), 1);
    }

    #[test]
    fn logical_boolean_operators_changing() {
        let expr: Expr = parse_quote! { w && x || y || z };
        assert_eq!(expr.complexity(), 2);
        let expr: Expr = parse_quote! { w && x && y || z };
        assert_eq!(expr.complexity(), 2);
        let expr: Expr = parse_quote! { w && x || y && z };
        assert_eq!(expr.complexity(), 3);
    }

    #[test]
    fn logical_boolean_operators_not_operator() {
        let expr: Expr = parse_quote! { !a && !b };
        assert_eq!(expr.complexity(), 1);
        let expr: Expr = parse_quote! { a && !(b && c) };
        assert_eq!(expr.complexity(), 2);
        let expr: Expr = parse_quote! { !(a || b) && !(c || d) };
        assert_eq!(expr.complexity(), 3);
    }
}