competitive_programming_rs/math/
chinese_remainder_theorem.rs1pub fn extended_gcd(a: i64, b: i64) -> (i64, i64, i64) {
2 if b == 0 {
3 (a, 1, 0)
4 } else {
5 let (d, q, p) = extended_gcd(b, a % b);
6 (d, p, q - a / b * p)
7 }
8}
9
10pub fn chinese_remainder_theorem(b: &[i64], modulo: &[i64]) -> Option<(i64, i64)> {
11 let (mut result, mut m) = (0, 1);
12 for i in 0..b.len() {
13 let (d, p, _) = extended_gcd(m, modulo[i]);
14 if (b[i] - result) % d != 0 {
15 return None;
16 }
17 let tmp = ((b[i] - result) / d * p) % (modulo[i] / d);
18 result += m * tmp;
19 m *= modulo[i] / d;
20 }
21 Some(((result % m + m) % m, m))
22}
23
24#[cfg(test)]
25mod tests {
26 use super::*;
27 use rand;
28 use rand::Rng;
29
30 #[test]
31 fn test_extended_gcd() {
32 for i in 1..10000 {
33 for j in (i + 1)..10000 {
34 let (gcd, x, y) = extended_gcd(i, j);
35 assert_eq!(i % gcd, 0);
36 assert_eq!(j % gcd, 0);
37 assert_eq!(i * x + j * y, gcd);
38 }
39 }
40 }
41
42 #[test]
43 fn test_crt() {
44 let mut rng = rand::thread_rng();
45 let n = 10;
46 let max_m = 100;
47 for _ in 0..1000 {
48 let ans = rng.gen::<u32>() as i64;
49 let mut b = vec![0; n];
50 let mut m = vec![0; n];
51 for i in 0..n {
52 m[i] = rng.gen::<u8>() as i64;
53 m[i] %= max_m;
54 m[i] += 1;
55 b[i] = ans % m[i];
56 }
57
58 let (a, _) = chinese_remainder_theorem(&b, &m).unwrap();
59 for i in 0..n {
60 assert_eq!(a % m[i], b[i]);
61 }
62 }
63 }
64}