1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
pub struct ReRooting<T, Identity, Merge, AddRoot> { dp: Vec<Vec<T>>, ans: Vec<T>, graph: Vec<Vec<usize>>, identity: Identity, merge: Merge, add_root: AddRoot, } impl<T, Identity, Merge, AddRoot> ReRooting<T, Identity, Merge, AddRoot> where T: Clone, Identity: Fn() -> T, Merge: Fn(T, T) -> T, AddRoot: Fn(T) -> T, { pub fn new(n: usize, identity: Identity, merge: Merge, add_root: AddRoot) -> Self { Self { dp: vec![vec![]; n], ans: vec![identity(); n], graph: vec![vec![]; n], identity, merge, add_root, } } pub fn add_edge(&mut self, a: usize, b: usize) { self.graph[a].push(b); } pub fn build(&mut self) { self.dfs(0, 0); self.dfs2(0, 0, (self.identity)()); } fn dfs(&mut self, v: usize, p: usize) -> T { let mut sum = (self.identity)(); let deg = self.graph[v].len(); self.dp[v] = vec![(self.identity)(); deg]; let next = self.graph[v].clone(); for (i, next) in next.into_iter().enumerate() { if next == p { continue; } let t = self.dfs(next, v); self.dp[v][i] = t.clone(); sum = (self.merge)(sum, t); } (self.add_root)(sum) } fn dfs2(&mut self, v: usize, p: usize, dp_p: T) { for (i, &next) in self.graph[v].iter().enumerate() { if next == p { self.dp[v][i] = dp_p.clone(); } } let deg = self.graph[v].len(); let mut dp_l = vec![(self.identity)(); deg + 1]; let mut dp_r = vec![(self.identity)(); deg + 1]; for i in 0..deg { dp_l[i + 1] = (self.merge)(dp_l[i].clone(), self.dp[v][i].clone()); } for i in (0..deg).rev() { dp_r[i] = (self.merge)(dp_r[i + 1].clone(), self.dp[v][i].clone()); } self.ans[v] = (self.add_root)(dp_l[deg].clone()); let next = self.graph[v].clone(); for (i, next) in next.into_iter().enumerate() { if next == p { continue; } self.dfs2( next, v, (self.add_root)((self.merge)(dp_l[i].clone(), dp_r[i + 1].clone())), ); } } } #[cfg(test)] mod tests { use crate::graph::re_rooting::ReRooting; #[test] fn test_re_rooting() { fn comb(n: usize, k: usize) -> usize { let mut ans = 1; for i in 0..k { ans *= n - i; ans /= i + 1; } ans } let merge = |e1: Option<(i64, usize)>, e2: Option<(i64, usize)>| { if let (Some((ans1, size1)), Some((ans2, size2))) = (e1, e2) { let c = comb(size1 + size2, size1); let ans = ans1 * ans2 * (c as i64); Some((ans, size1 + size2)) } else { e1.or(e2) } }; let add_root = |e: Option<(i64, usize)>| e.map(|(ans, size)| (ans, size + 1)).or(Some((1, 1))); let n = 8; let mut graph = ReRooting::new(n, || None, merge, add_root); let edges = vec![(1, 2), (2, 3), (3, 4), (3, 5), (3, 6), (6, 7), (6, 8)]; for (u, v) in edges { let u = u - 1; let v = v - 1; graph.add_edge(u, v); graph.add_edge(v, u); } graph.build(); assert_eq!(graph.ans[0].unwrap().0, 40); assert_eq!(graph.ans[1].unwrap().0, 280); assert_eq!(graph.ans[2].unwrap().0, 840); assert_eq!(graph.ans[3].unwrap().0, 120); assert_eq!(graph.ans[4].unwrap().0, 120); assert_eq!(graph.ans[5].unwrap().0, 504); assert_eq!(graph.ans[6].unwrap().0, 72); assert_eq!(graph.ans[7].unwrap().0, 72); } }